Skip to main content
Log in

Wide binaries as a critical test of classical gravity

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Modified gravity scenarios where a change of regime appears at acceleration scales a<a 0 have been proposed. Since for 1M systems the acceleration drops below a 0 at scales of around 7000 AU, a statistical survey of wide binaries with relative velocities and separations reaching 104 AU and beyond should prove useful to the above debate. We apply the proposed test to the best currently available data. Results show a constant upper limit to the relative velocities in wide binaries which is independent of separation for over three orders of magnitude, in analogy with galactic flat rotation curves in the same a<a 0 acceleration regime. Our results are suggestive of a breakdown of Kepler’s third law beyond aa 0 scales, in accordance with generic predictions of modified gravity theories designed not to require any dark matter at galactic scales and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Allen, A. Poveda, M.A. Herrera, Astron. Astrophys. 356, 529 (2000)

    ADS  Google Scholar 

  2. G.W. Angus, Mon. Not. R. Astron. Soc. 387, 1481 (2008)

    Article  ADS  Google Scholar 

  3. J. Bekenstein, Phys. Rev. D 70, 3509 (2004)

    Google Scholar 

  4. T. Bernal, S. Capozziello, J.C. Hidalgo, S. Mendoza, Eur. Phys. J. C 71, 1794 (2011)

    Article  ADS  Google Scholar 

  5. J.P. Bruneton, G. Esposito-Farese, Phys. Rev. D 76, 124012 (2007)

    Article  ADS  Google Scholar 

  6. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)

    Article  ADS  Google Scholar 

  7. S. Capozziello, V.F. Cardone, A. Troisi, Mon. Not. R. Astron. Soc. 375, 1423 (2007)

    Article  ADS  Google Scholar 

  8. J. Chaname, A. Gould, Astrophys. J. 601, 289 (2004)

    Article  ADS  Google Scholar 

  9. M.C. Chiu, C.M. Ko, Y. Tian, H.S. Zhao, Phys. Rev. D 83, 06352 (2011)

    Article  Google Scholar 

  10. S. Dhital, A.A. West, K.G. Stassun, J.J. Bochanski, Astron. J. 139, 2566 (2010)

    Article  ADS  Google Scholar 

  11. C. Fabricius, E. Høg, V.V. Makarov, B.D. Mason, G.L. Wycoff, S.E. Urban, Astron. Astrophys. 384, 180 (2002)

    Article  ADS  Google Scholar 

  12. A. Halle, H.S. Zhao, B. Li, Astrophys. J. Suppl. Ser. 177, 1 (2008)

    Article  ADS  Google Scholar 

  13. X. Hernandez, S. Mendoza, T. Suarez, T. Bernal, Astron. Astrophys. 514, A101 (2010)

    Article  ADS  Google Scholar 

  14. E. Høg et al., Astron. Astrophys. 357, 367 (2000)

    ADS  Google Scholar 

  15. Y.F. Jiang, S. Tremaine, Mon. Not. R. Astron. Soc. 401, 977 (2010)

    Article  ADS  Google Scholar 

  16. P. Kroupa et al., Astron. Astrophys. 523, 32 (2010)

    Article  ADS  Google Scholar 

  17. R. Lane et al., Mon. Not. R. Astron. Soc. 406, 2732 (2010)

    Article  ADS  Google Scholar 

  18. P.D. Mannheim, D. Kazanas, Astrophys. J. 342, 635 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  19. S.S. McGaugh, Phys. Rev. Lett. 106, 121303 (2011)

    Article  ADS  Google Scholar 

  20. S. Mendoza, X. Hernandez, J.C. Hidalgo, T. Bernal, Mon. Not. R. Astron. Soc. 411, 226 (2011)

    Article  ADS  Google Scholar 

  21. M. Milgrom, R.H. Sanders, Astrophys. J. 678, 131 (2008)

    Article  ADS  Google Scholar 

  22. M. Milgrom, Phys. Rev. D 82, 043523 (2010)

    Article  ADS  Google Scholar 

  23. N.R. Napolitano, S. Capozziello, A.J. Romanowsky, M. Capaccioli, C. Tortora, Astrophys. J. (2012, in press). arXiv:1201.3363

  24. R.H. Sanders, S.S. McGaugh, Annu. Rev. Astron. Astrophys. 40, 263 (2002)

    Article  ADS  Google Scholar 

  25. R. Scarpa, G. Marconi, R. Gimuzzi, G. Carraro, Astron. Astrophys. 462, L9 (2007)

    Article  ADS  Google Scholar 

  26. R. Scarpa, G. Marconi, G. Carraro, R. Falomo, S. Villanova, Astron. Astrophys. 525, A148 (2011)

    Article  ADS  Google Scholar 

  27. E.J. Shaya, R.P. Olling, Astrophys. J. Suppl. Ser. 192, 2 (2011)

    Article  ADS  Google Scholar 

  28. C. Skordis, D.F. Mota, P.G. Ferreira, C. Boehm, Phys. Rev. Lett. 96, 011301 (2006)

    Article  ADS  Google Scholar 

  29. Y. Sobouti, Astron. Astrophys. 464, 921 (2007)

    Article  ADS  MATH  Google Scholar 

  30. F. van Leeuwen, Astron. Astrophys. 474, 653 (2007)

    Article  ADS  Google Scholar 

  31. H.S. Zhao, B. Famaey, Phys. Rev. D 81, 087304 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Hernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernandez, X., Jiménez, M.A. & Allen, C. Wide binaries as a critical test of classical gravity. Eur. Phys. J. C 72, 1884 (2012). https://doi.org/10.1140/epjc/s10052-012-1884-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1884-6

Keywords

Navigation