Skip to main content
Log in

Top-quark mediated effects in hadronic Higgs-Strahlung

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Novel contributions to the total inclusive cross section for Higgs-Strahlung in the Standard Model at hadron colliders are evaluated. Although formally of order \(\alpha_{s}^{2}\), they have not been taken into account in previous NNLO predictions. The terms under consideration are induced by Higgs radiation off top-quark loops and thus proportional to the top-quark Yukawa coupling. At the Tevatron, their effects to WH production are below 1% in the relevant Higgs mass range, while for ZH production, we find corrections between about 1% and 2%. At the LHC, the contribution of the newly evaluated terms to the cross section is typically of the order of 1%–3%. Based on these results, we provide updated predictions for the total inclusive Higgs-Strahlung cross section at the Tevatron and the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The ATLAS Collaboration, Update of the combination of Higgs boson searches in 1.0 to 2.3 fb−1 of pp collisions data taken at \(\sqrt{s} = 7~\mbox{TeV}\) with the ATLAS experiment at the LHC, in ATLAS-CONF-2011-135 (2011)

    Google Scholar 

  2. The CMS Collaboration, Search for standard model Higgs boson in pp collisions at \(\sqrt{s} = 7~\mbox{TeV}\) and integrated luminosity up to 1.7 fb−1, in CMS PAS HIG-11-022 (2011)

    Google Scholar 

  3. R.S. Thorne, G. Watt, PDF dependence of Higgs cross sections at the Tevatron and LHC: response to recent criticism. J. High Energy Phys. 1108, 100 (2011). arXiv:1106.5789

    Article  ADS  Google Scholar 

  4. J.M. Butterworth, A.R. Davison, M. Rubin, G.P. Salam, Jet substructure as a new Higgs search channel at the LHC. Phys. Rev. Lett. 100, 242001 (2008). arXiv:0802.2470

    Article  ADS  Google Scholar 

  5. D. Zeppenfeld, R. Kinnunen, A. Nikitenko, E. Richter-Was, Measuring Higgs boson couplings at the LHC. Phys. Rev. 62, 013009 (2000). hep-ph/0002036

    ADS  Google Scholar 

  6. G. Ferrera, M. Grazzini, F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO. Phys. Rev. Lett. 107, 152003 (2011). arXiv:1107.1164

    Article  ADS  Google Scholar 

  7. T. Han, S. Willenbrock, QCD correction to the ppWH and ZH total cross-sections. Phys. Lett. B 273, 167 (1991)

    ADS  Google Scholar 

  8. O. Brein, A. Djouadi, R. Harlander, NNLO QCD corrections to the Higgs-Strahlung processes at hadron colliders. Phys. Lett. B 579, 149 (2004). hep-ph/0307206

    ADS  Google Scholar 

  9. R. Hamberg, W.L. van Neerven, T. Matsuura, A complete calculation of the order \(\alpha_{s}^{2}\) correction to the Drell–Yan K factor. Nucl. Phys. B 359, 343 (1991). (E) ibid B 644, 403 (2002)

    Article  ADS  Google Scholar 

  10. R.V. Harlander, W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders. Phys. Rev. Lett. 88, 201801 (2002). hep-ph/0201206

    Article  ADS  Google Scholar 

  11. S. Dittmaier et al. (LHC Higgs Cross Section Working Group Collaboration), Handbook of LHC Higgs Cross Sections. 1. Inclusive Observables. arXiv:1101.0593

  12. B.A. Kniehl, Associated production of Higgs and Z bosons from gluon fusion in hadron collisions. Phys. Rev. 42, 2253 (1990)

    Article  ADS  Google Scholar 

  13. P.J. Rijken, W.L. van Neerven, Heavy flavor contributions to the Drell–Yan cross-section. Phys. Rev. 52, 149 (1995). hep-ph/9501373

    ADS  Google Scholar 

  14. R.V. Harlander, H. Mantler, S. Marzani, K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass. Eur. Phys. J. C 66, 359 (2010). arXiv:0912.2104

    Article  ADS  Google Scholar 

  15. R.V. Harlander, K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order. J. High Energy Phys. 0911, 088 (2009). arXiv:0909.3420

    Article  ADS  Google Scholar 

  16. S. Marzani, R.D. Ball, V. Del Duca, S. Forte, A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order. Nucl. Phys. B 800, 127 (2008). arXiv:0801.2544

    Article  ADS  MATH  Google Scholar 

  17. A. Pak, M. Rogal, M. Steinhauser, Virtual three-loop corrections to Higgs boson production in gluon fusion for finite top quark mass. Phys. Lett. B 679, 473–477 (2009). arXiv:0907.2998

    ADS  Google Scholar 

  18. A. Pak, M. Rogal, M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC. J. High Energy Phys. 1002, 025 (2010). arXiv:0911.4662

    Article  ADS  Google Scholar 

  19. V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni, R. Pittau, Automation of one-loop QCD corrections. J. High Energy Phys. 1105, 044 (2011). arXiv:1103.0621

    Article  ADS  Google Scholar 

  20. P. Nogueira, Automatic Feynman graph generation. J. Comput. Phys. 105, 279 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. R. Harlander, T. Seidensticker, M. Steinhauser, Corrections of \(\mathcal{O}(\alpha\alpha_{s})\) to the decay of the Z boson into bottom quarks. Phys. Lett. B 426, 125 (1998). hep-ph/9712228

    ADS  Google Scholar 

  22. T. Seidensticker, Automatic application of successive asymptotic expansions of Feynman diagrams. hep-ph/9905298

  23. M. Steinhauser, MATAD: a program package for the computation of massive tadpoles. Comput. Phys. Commun. 134, 335 (2001). hep-ph/0009029

    Article  ADS  MATH  Google Scholar 

  24. J.A. Vermaseren, New features of FORM. math-ph/0010025

  25. G. Passarino, M.J.G. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model. Nucl. Phys. B 160, 151 (1979)

    Article  ADS  Google Scholar 

  26. R.K. Ellis, G. Zanderighi, Scalar one-loop integrals for QCD. J. High Energy Phys. 0802, 002 (2008). arXiv:0712.1851

    Article  ADS  Google Scholar 

  27. O. Brein, Ph.D. thesis, Rhombos-Verlag., Berlin (2003)

  28. G.J. van Oldenborgh, J.A.M. Vermaseren, New algorithms for one loop integrals. Z. Phys. C 46, 425 (1990)

    MathSciNet  Google Scholar 

  29. G.J. van Oldenborgh, FF 2.0, a package to evaluate one-loop integrals. http://www.xs4all.nl/~gjvo/FF.html

  30. A. Aeppli, Radiative corrections in the electroweak theory. Inaugural-dissertation, Zürich University (1992)

  31. V.A. Smirnov, Asymptotic expansions in momenta and masses and calculation of Feynman diagrams. Mod. Phys. Lett. A 10, 1485 (1995). hep-th/9412063

    Article  ADS  Google Scholar 

  32. V.A. Smirnov, Applied asymptotic expansions in momenta and masses. Springer Tracts Mod. Phys. 177, 1 (2002)

    Article  ADS  Google Scholar 

  33. R. Harlander, Asymptotic expansions: methods and applications, in Ustron 99. Proc. of the 23rd School of Theoretical Physics, Recent Developments in Theory of Fundamental Interactions, Ustron, Poland, 15–22 Sept. (1999)

    Google Scholar 

  34. R. Harlander, Acta Phys. Pol. A 30, 3443 (1999). hep-ph/9910496

    ADS  Google Scholar 

  35. K. Nakamura et al. (Particle Data Group Collaboration), Review of particle physics. J. Phys. G 37, 075021 (2010). http://pdg.lbl.gov/

    Article  ADS  Google Scholar 

  36. S.A. Larin, The renormalization of the axial anomaly in dimensional regularization. Phys. Lett. B 303, 113 (1993). hep-ph/9302240

    ADS  Google Scholar 

  37. J. Küblbeck, M. Böhm, A. Denner, FeynArts: computer algebraic generation of Feynman graphs and amplitudes. Comput. Phys. Commun. 60, 165 (1990)

    Article  ADS  Google Scholar 

  38. H. Eck, Ph.D. thesis, University of Würzburg (1995)

  39. T. Hahn, M. Perez-Victoria, Automatized one-loop calculations in four and D dimensions. Comput. Phys. Commun. 118, 153 (1999). hep-ph/9807565

    Article  ADS  Google Scholar 

  40. A. Denner, S. Dittmaier, Reduction schemes for one-loop tensor integrals. Nucl. Phys. B 734, 62 (2006). hep-ph/0509141

    Article  ADS  MATH  Google Scholar 

  41. A. Denner, S. Dittmaier, Scalar one-loop 4-point integrals. Nucl. Phys. B 844, 199 (2011). arXiv:1005.2076

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. O. Brein, R.V. Harlander, T.J.E. Zirke, vh@nnlo: a program to evaluate hadronic Higgs–Strahlung at next-to-next-to-leading order (in preparation)

  43. M.L. Ciccolini, S. Dittmaier, M. Krämer, Electroweak radiative corrections to associated WH and ZH production at hadron colliders. Phys. Rev. 68, 073003 (2003). hep-ph/0306234

    Google Scholar 

  44. D.L. Rainwater, D. Zeppenfeld, Searching for Hγγ in weak boson fusion at the LHC. J. High Energy Phys. 9712, 005 (1997). hep-ph/9712271

    Article  ADS  Google Scholar 

  45. T. Han, G. Valencia, S. Willenbrock, Structure function approach to vector boson scattering in pp collisions. Phys. Rev. Lett. 69, 3274 (1992). hep-ph/9206246

    Article  ADS  Google Scholar 

  46. R.V. Harlander, J. Vollinga, M.M. Weber, Gluon-induced weak boson fusion. Phys. Rev. 77, 053010 (2008). arXiv:0801.3355

    ADS  Google Scholar 

  47. P. Bolzoni, F. Maltoni, S.O. Moch, M. Zaro, Higgs production via vector-boson fusion at NNLO in QCD. Phys. Rev. Lett. 105, 011801 (2010). arXiv:1003.4451

    Article  ADS  Google Scholar 

  48. P. Bolzoni, F. Maltoni, S.-O. Moch, M. Zaro, Vector boson fusion at NNLO in QCD: SM Higgs and beyond. arXiv:1109.3717

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert V. Harlander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brein, O., Harlander, R.V., Wiesemann, M. et al. Top-quark mediated effects in hadronic Higgs-Strahlung. Eur. Phys. J. C 72, 1868 (2012). https://doi.org/10.1140/epjc/s10052-012-1868-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-012-1868-6

Keywords

Navigation