Skip to main content
Log in

Supersymmetry without prejudice at the LHC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC (\(\sqrt{s}=14\) TeV, 1 fb−1) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of ∼71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 71k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all (two-thirds) of the pMSSM model points are discovered with a significance S>5 in at least one of these 11 analyses assuming a 50% systematic error on the SM background. If this systematic error can be reduced to only 20% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Drees, R. Godbole, P. Roy, Hackensack, USA: World Scientific (2004), 555 pp.

  2. H. Baer, X. Tata, Cambridge, UK: Cambridge University Press (2006), 537 pp.

  3. C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  4. E. Cremmer, P. Fayet, L. Girardello, Phys. Lett. B 122, 41 (1983)

    Article  ADS  Google Scholar 

  5. G.F. Giudice, R. Rattazzi, Phys. Rep. 322, 419 (1999). hep-ph/9801271

    Article  ADS  Google Scholar 

  6. M. Dine, A.E. Nelson, Y. Nir et al., Phys. Rev. D 53, 2658 (1996). hep-ph/9507378

    Article  ADS  Google Scholar 

  7. L. Randall, R. Sundrum, Nucl. Phys. B 557, 79 (1999). hep-th/9810155

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. G.F. Giudice, M.A. Luty, H. Murayama et al., J. High Energy Phys. 12, 027 (1998). hep-ph/9810442

    Article  ADS  Google Scholar 

  9. Z. Chacko, M.A. Luty, A.E. Nelson et al., J. High Energy Phys. 01, 003 (2000). hep-ph/9911323

    Article  ADS  Google Scholar 

  10. D.E. Kaplan, G.D. Kribs, M. Schmaltz, Phys. Rev. D 62, 035010 (2000). hep-ph/9911293

    Article  ADS  Google Scholar 

  11. V.M. Abazov et al. (D0), Phys. Lett. B 660, 449 (2008). 0712.3805

    Article  ADS  Google Scholar 

  12. G. Aad et al. (The ATLAS), 0901.0512 (2009)

  13. C.F. Berger, J.S. Gainer, J.L. Hewett et al., J. High Energy Phys. 02, 023 (2009). 0812.0980

    Article  MathSciNet  ADS  Google Scholar 

  14. J. Alwall, M.-P. Le, M. Lisanti et al., Phys. Lett. B 666, 34 (2008). 0803.0019

    Article  ADS  Google Scholar 

  15. J. Alwall, M.-P. Le, M. Lisanti et al., Phys. Rev. D 79, 015005 (2009). 0809.3264

    Article  ADS  Google Scholar 

  16. L. Pape, D. Treille, Rep. Prog. Phys. 69, 2843 (2006)

    Article  ADS  Google Scholar 

  17. G. Weiglein et al. (LHC/LC Study Group), Phys. Rep. 426, 47 (2006). hep-ph/0410364

    Article  ADS  Google Scholar 

  18. R.C. Cotta, J.S. Gainer, J.L. Hewett et al., New J. Phys. 11, 105026 (2009). 0903.4409

    Article  ADS  Google Scholar 

  19. R.C. Cotta, J.S. Gainer, J.L. Hewett et al., Nucl. Phys. B, Proc. Suppl. 194, 133 (2009). 0909.4088

    Article  ADS  Google Scholar 

  20. A. Djouadi, J.-L. Kneur, G. Moultaka, Comput. Phys. Commun. 176, 426 (2007). hep-ph/0211331

    Article  ADS  MATH  Google Scholar 

  21. G. D’Ambrosio, G.F. Giudice, G. Isidori et al., Nucl. Phys. B 645, 155 (2002). hep-ph/0207036

    Article  ADS  Google Scholar 

  22. G. Belanger, F. Boudjema, A. Pukhov et al., Comput. Phys. Commun. 177, 894 (2007)

    Article  ADS  MATH  Google Scholar 

  23. G. Belanger, F. Boudjema, A. Pukhov et al., Comput. Phys. Commun. 180, 747 (2009). 0803.2360

    Article  ADS  MATH  Google Scholar 

  24. G. Belanger, F. Boudjema, A. Pukhov et al., Comput. Phys. Commun. 149, 103 (2002). hep-ph/0112278

    Article  ADS  MATH  Google Scholar 

  25. G. Belanger, F. Boudjema, A. Pukhov et al., Comput. Phys. Commun. 174, 577 (2006). hep-ph/0405253

    Article  ADS  MATH  Google Scholar 

  26. G. Belanger, F. Boudjema, A. Pukhov et al., Comput. Phys. Commun. 176, 367 (2007). hep-ph/0607059

    Article  ADS  MATH  Google Scholar 

  27. W. Beenakker, R. Hopker, M. Spira, hep-ph/9611232 (1996)

  28. W. Beenakker, R. Hopker, M. Spira et al., Nucl. Phys. B 492, 51 (1997). hep-ph/9610490

    ADS  Google Scholar 

  29. W. Beenakker, M. Kramer, T. Plehn et al., Nucl. Phys. B 515, 3 (1998). hep-ph/9710451

    Article  ADS  Google Scholar 

  30. W. Beenakker et al., Phys. Rev. Lett. 83, 3780 (1999). hep-ph/9906298

    Article  ADS  Google Scholar 

  31. M. Spira, hep-ph/0211145 (2002)

  32. T. Plehn, Czechoslov. J. Phys. 55, B213 (2005). hep-ph/0410063

    Google Scholar 

  33. A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Pol. A 38, 635 (2007). hep-ph/0609292

    ADS  Google Scholar 

  34. T. Sjostrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 05, 026 (2006). hep-ph/0603175

    Article  ADS  Google Scholar 

  35. J. Conway, PGS4. http://www.physics.ucdavis.edu/~conway/research/software/pgs/pgs.html

  36. G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998). physics/9711021

    Article  ADS  Google Scholar 

  37. T. Aaltonen et al. (CDF), Phys. Rev. Lett. 101, 251801 (2008). 0808.2446

    Article  ADS  Google Scholar 

  38. T. Aaltonen et al. (CDF), Phys. Rev. Lett. 101, 071802 (2008). 0802.3887

    Article  ADS  Google Scholar 

  39. V.M. Abazov et al. (D0), Phys. Rev. Lett. 97, 171806 (2006). hep-ex/0608013

    Article  ADS  Google Scholar 

  40. V. Buescher et al. (CDF and D0), hep-ex/0504004 (2005)

  41. V.M. Abazov et al. (D0), Phys. Lett. B 665, 1 (2008). 0803.2263

    Article  ADS  Google Scholar 

  42. T. Aaltonen et al. (CDF), Phys. Rev. D 76, 072010 (2007). 0707.2567

    Article  ADS  Google Scholar 

  43. F. Abe et al. (CDF), Phys. Rev. D 46, 1889 (1992)

    Article  ADS  Google Scholar 

  44. V.M. Abazov et al. (D0), Phys. Rev. Lett. 102, 161802 (2009). 0809.4472

    Article  ADS  Google Scholar 

  45. G. Benelli, UMI-31-09638

  46. LEP Electroweak Working Group, http://www.cern.ch/LEPEWWG

  47. R. Barate et al. (ALEPH), Phys. Lett. B 469, 303 (1999)

    Article  ADS  Google Scholar 

  48. LEP SUSY Working Group, http://lepsusy.web.cern.ch/lepsusy

  49. LEP Higgs Working Group, http://lephiggs.web.cern.ch/LEPHIGGS/www/Welcome.html

  50. S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rep. 425, 265 (2006). hep-ph/0412214

    Article  ADS  Google Scholar 

  51. D. Feldman, Z. Liu, P. Nath, J. High Energy Phys. 04, 054 (2008). 0802.4085

    Article  ADS  Google Scholar 

  52. G. Aad et al. (Atlas Collaboration), 1102.5290 (2011)

  53. V. Khachatryan et al. (CMS Collaboration), Phys. Lett. B 698, 196 (2011). 1101.1628

    Article  ADS  Google Scholar 

  54. S. Chatrchyan et al. (CMS Collaboration), 1107.1279 (2011)

  55. C.H. Chen, M. Drees, J.F. Gunion, Phys. Rev. D 55, 330 (1997). hep-ph/9607421

    Article  ADS  Google Scholar 

  56. C.H. Chen, M. Drees, J.F. Gunion, hep-ph/9902309 (1999)

  57. P.M. Nadolsky et al., Phys. Rev. D 78, 013004 (2008). 0802.0007

    Article  ADS  Google Scholar 

  58. D. Stump et al., J. High Energy Phys. 10, 046 (2003). hep-ph/0303013

    Article  ADS  Google Scholar 

  59. G. Corcella et al., J. High Energy Phys. 01, 010 (2001). hep-ph/0011363

    Article  ADS  Google Scholar 

  60. G. Corcella et al., hep-ph/0210213 (2002)

  61. S. Moretti, K. Odagiri, P. Richardson et al., J. High Energy Phys. 04, 028 (2002). hep-ph/0204123

    Article  ADS  Google Scholar 

  62. L.J. Dixon, Private communication

  63. A.J. Barr, C.G. Lester, 1004.2732 (2010)

  64. I. Hinchliffe, F.E. Paige, M.D. Shapiro et al., Phys. Rev. D 55, 5520 (1997). hep-ph/9610544

    Article  ADS  Google Scholar 

  65. T. Robens, Talk given at SUSY2010, Bonn, Germany, 23–28 Aug. 2010

  66. M. Fairbairn et al., Phys. Rep. 438, 1 (2007). hep-ph/0611040

    Article  ADS  Google Scholar 

  67. A.R. Raklev, 0908.0315 (2009)

  68. F.D. Steffen, J. Cosmol. Astropart. Phys. 0609, 001 (2006). hep-ph/0605306

    Article  ADS  Google Scholar 

  69. G.R. Farrar, P. Fayet, Phys. Lett. B 76, 575 (1978)

    Article  ADS  Google Scholar 

  70. M.S. Chanowitz, S.R. Sharpe, Phys. Lett. B 126, 225 (1983)

    Article  ADS  Google Scholar 

  71. J.L. Hewett, T.G. Rizzo, M.A. Doncheski, Phys. Rev. D 56, 5703 (1997). hep-ph/9612377

    Article  ADS  Google Scholar 

  72. G.R. Farrar, Phys. Rev. Lett. 53, 1029 (1984)

    Article  ADS  Google Scholar 

  73. F. Buccella, G.R. Farrar, A. Pugliese, Phys. Lett. B 153, 311 (1985)

    Article  ADS  Google Scholar 

  74. G.R. Farrar, Phys. Rev. D 51, 3904 (1995). hep-ph/9407401

    Article  ADS  Google Scholar 

  75. H. Baer, K.-M. Cheung, J.F. Gunion, Phys. Rev. D 59, 075002 (1999). hep-ph/9806361

    Article  ADS  Google Scholar 

  76. E.L. Berger et al., Phys. Rev. Lett. 86, 4231 (2001). hep-ph/0012001

    Article  ADS  Google Scholar 

  77. T. Sjostrand, P.Z. Skands, Nucl. Phys. B 659, 243 (2003). hep-ph/0212264

    Article  MathSciNet  ADS  Google Scholar 

  78. J.L. Hewett, B. Lillie, M. Masip et al., J. High Energy Phys. 09, 070 (2004). hep-ph/0408248

    Article  ADS  Google Scholar 

  79. A.C. Kraan, Eur. Phys. J. C 37, 91 (2004). hep-ex/0404001

    Article  ADS  Google Scholar 

  80. W. Kilian, T. Plehn, P. Richardson et al., Eur. Phys. J. C 39, 229 (2005). hep-ph/0408088

    Article  ADS  Google Scholar 

  81. R. Mackeprang, A. Rizzi, Eur. Phys. J. C 50, 353 (2007). hep-ph/0612161

    Article  ADS  Google Scholar 

  82. R. Mackeprang, AIP Conf. Proc. 1200, 746 (2010). 0909.5104

    Article  ADS  Google Scholar 

  83. M.R. Buckley, B. Echenard, D. Kahawala et al., 1008.2756 (2010)

  84. H.E. Haber, G.L. Kane, Phys. Rep. 117, 75 (1985)

    Article  ADS  Google Scholar 

  85. S.P. Martin, hep-ph/9709356 (1997)

  86. D.J.H. Chung et al., Phys. Rep. 407, 1 (2005). hep-ph/0312378

    Article  ADS  Google Scholar 

  87. H.K. Dreiner, H.E. Haber, S.P. Martin, Phys. Rep. 494, 1 (2010). 0812.1594

    Article  MathSciNet  ADS  Google Scholar 

  88. P.Z. Skands et al., J. High Energy Phys. 07, 036 (2004). hep-ph/0311123

    Article  ADS  Google Scholar 

  89. R.C. Cotta, J.A. Conley, J.S. Gainer et al., 1007.5520 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Conley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conley, J.A., Gainer, J.S., Hewett, J.L. et al. Supersymmetry without prejudice at the LHC. Eur. Phys. J. C 71, 1697 (2011). https://doi.org/10.1140/epjc/s10052-011-1697-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1697-z

Keywords

Navigation