Skip to main content
Log in

Survival probability of large rapidity gaps in the QCD and N=4 SYM motivated model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this paper we present a self-consistent theoretical approach for the calculation of the Survival Probability for central dijet production. These calculations are performed in a model of high energy soft interactions based on two ingredients: (i) compatibility with the results of N=4 SYM, which at the moment is the only theory that is able to deal with a large coupling constant; and (ii) the required matching with high energy QCD. Assuming, in accordance with these prerequisites, that the soft Pomeron intercept is rather large and the slope of the Pomeron trajectory is equal to zero, we derive analytical formulae that sum both enhanced and semi-enhanced diagrams for elastic and diffractive amplitudes. Using parameters obtained from a fit to the available experimental data, we calculate the Survival Probability for exclusive central dijet production at energies accessible at the LHC. The results presented here, which include the contribution of semi-enhanced and net diagrams, are considerably larger than our previous estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Bjorken, Phys. Rev. D 47, 101–113 (1993)

    Article  ADS  Google Scholar 

  2. Y.L. Dokshitzer, V.A. Khoze, T. Sjostrand, Phys. Lett. B 274, 116–121 (1992)

    Article  ADS  Google Scholar 

  3. E. Gotsman, E.M. Levin, U. Maor, Phys. Lett. B 309, 199–204 (1993). arXiv:hep-ph/9302248

    Article  ADS  Google Scholar 

  4. E. Gotsman, E.M. Levin, U. Maor, Phys. Lett. B 438, 229–234 (1998). arXiv:hep-ph/9804404

    Article  ADS  Google Scholar 

  5. E. Gotsman, E.M. Levin, U. Maor, Phys. Rev. D 60, 094011 (1999). arXiv:hep-ph/9902294

    Article  ADS  Google Scholar 

  6. E. Gotsman, E. Levin, U. Maor et al., arXiv:hep-ph/0511060

  7. E. Gotsman, H. Kowalski, E. Levin et al., Eur. Phys. J. C 47, 655–669 (2006). arXiv:hep-ph/0512254

    Article  ADS  Google Scholar 

  8. E. Gotsman, E. Levin, U. Maor, arXiv:0708.1506 [hep-ph]

  9. E. Gotsman, E. Levin, U. Maor, Braz. J. Phys. 38, 431–436 (2008). arXiv:0805.0418 [hep-ph]

    Article  Google Scholar 

  10. E. Gotsman, E. Levin, U. Maor, Phys. Lett. B 452, 387–394 (1999). arXiv:hep-ph/9901416

    Article  ADS  Google Scholar 

  11. E. Gotsman, A. Kormilitzin, E. Levin et al., Eur. Phys. J. C 52, 295–304 (2007). arXiv:hep-ph/0702053

    Article  ADS  Google Scholar 

  12. F. Abe et al. (CDF Collaboration), Phys. Rev. D 50, 5535–5549 (1994)

    ADS  Google Scholar 

  13. N.A. Amos et al. (E710 Collaboration), Phys. Lett. B 301, 313–316 (1993)

    Article  ADS  Google Scholar 

  14. E. Gotsman, E. Levin, U. Maor, J.S. Miller, Eur. Phys. J. C 57, 689–709 (2008). arXiv:0805.2799 [hep-ph]

    Article  ADS  Google Scholar 

  15. E. Gotsman, E. Levin, U. Maor, Eur. Phys. J. C 71, 1553 (2011). arXiv:1010.5323 [hep-ph]

    ADS  Google Scholar 

  16. R.C. Brower, J. Polchinski, M.J. Strassler, C.I. Tan, J. High Energy Phys. 0712, 005 (2007). arXiv:hep-th/0603115

    Article  MathSciNet  ADS  Google Scholar 

  17. R.C. Brower, M.J. Strassler, C.I. Tan, J. High Energy Phys. 0903, 092 (2009). arXiv:0710.4378 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  18. R.C. Brower, M.J. Strassler, C.I. Tan, J. High Energy Phys. 0903, 050 (2009). arXiv:0707.2408 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  19. Y. Hatta, E. Iancu, A.H. Mueller, J. High Energy Phys. 0801, 026 (2008). arXiv:0710.2148 [hep-th]

    Article  ADS  Google Scholar 

  20. L. Cornalba, M.S. Costa, Phys. Rev. D 78, 09010 (2008). arXiv:0804.1562 [hep-ph]

    Article  Google Scholar 

  21. L. Cornalba, M.S. Costa, J. Penedones, J. High Energy Phys. 0806, 048 (2008). arXiv:0801.3002 [hep-th]

    Article  MathSciNet  ADS  Google Scholar 

  22. B. Pire, C. Roiesnel, L. Szymanowski, S. Wallon, Phys. Lett. B 670, 84 (2008). arXiv:0805.4346 [hep-ph]

    Article  ADS  Google Scholar 

  23. E. Levin, J. Miller, B.Z. Kopeliovich, I. Schmidt, J. High Energy Phys. 0902, 048 (2009). arXiv:0811.3586 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  24. A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko, V.N. Velizhanin, Phys. Lett. B 595, 521 (2004). [Erratum-ibid. 632, 754 (2006)]. arXiv:hep-th/0404092

    Article  MathSciNet  ADS  Google Scholar 

  25. A.V. Kotikov, L.N. Lipatov, Nucl. Phys. B 661, 19 (2003). [Erratum-ibid. 685, 405 (2004)]. arXiv:hep-ph/0208220

    ADS  MATH  Google Scholar 

  26. A.V. Kotikov, L.N. Lipatov, Nucl. Phys. B 582, 19 (2000). arXiv:hep-ph/0004008

    Article  ADS  Google Scholar 

  27. A.V. Kotikov, L.N. Lipatov, V.N. Velizhanin, Phys. Lett. B 557, 114 (2003). arXiv:hep-ph/0301021

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. J.R. Andersen, A. Sabio Vera, Nucl. Phys. B 699, 90 (2004). arXiv:hep-th/0406009

    Article  ADS  MATH  Google Scholar 

  29. E. Levin, I. Potashnikova, J. High Energy Phys. 1008, 112 (2010). arXiv:1007.0306 [hep-ph]

    Article  ADS  Google Scholar 

  30. R.C. Brower, M. Djuric, I. Sarcevic, C.-I. Tan, J. High Energy Phys. 1011, 051 (2010). arXiv:1007.2259 [hep-ph]

    Article  ADS  Google Scholar 

  31. M.L. Good, W.D. Walker, Phys. Rev. 120, 1857 (1960)

    Article  ADS  Google Scholar 

  32. J. Bartels, M. Braun, G.P. Vacca, Eur. Phys. J. C 40, 419 (2005). arXiv:hep-ph/0412218

    Article  ADS  Google Scholar 

  33. J. Bartels, C. Ewerz, J. High Energy Phys. 9909, 026 (1999). arXiv:hep-ph/9908454

    Article  ADS  Google Scholar 

  34. J. Bartels, M. Wusthoff, Z. Phys. C 6, 157 (1995)

    Article  ADS  Google Scholar 

  35. A.H. Mueller, B. Patel, Nucl. Phys. B 425, 471 (1994). arXiv:hep-ph/9403256

    Article  ADS  Google Scholar 

  36. J. Bartels, Z. Phys. C 60, 471 (1993)

    Article  ADS  Google Scholar 

  37. M.G. Ryskin, A.D. Martin, V.A. Khoze et al., J. Phys. G 36, 093001 (2009). arXiv:0907.1374 [hep-ph]

    Article  ADS  Google Scholar 

  38. M.G. Ryskin, A.D. Martin, V.A. Khoze et al., Eur. Phys. J. C 60, 265–272 (2009). arXiv:0812.2413 [hep-ph]

    Article  ADS  Google Scholar 

  39. M.G. Ryskin, A.D. Martin, V.A. Khoze et al., Eur. Phys. J. C 60, 249–264 (2009). arXiv:0812.2407 [hep-ph]

    Article  ADS  Google Scholar 

  40. M.G. Ryskin, A.D. Martin, V.A. Khoze et al., AIP Conf. Proc. 1105, 252–257 (2009). arXiv:0811.1481 [hep-ph]

    ADS  Google Scholar 

  41. M.G. Ryskin, A.D. Martin, V.A. Khoze et al., arXiv:0810.3324 [hep-ph]

  42. M.G. Ryskin, A.D. Martin, V.A. Khoze et al., arXiv:0810.3560 [hep-ph]

  43. M.G. Ryskin, A.D. Martin, V.A. Khoze et al., Eur. Phys. J. C 54, 199 (2008). arXiv:0710.2494 [hep-ph]

    Article  ADS  Google Scholar 

  44. S. Ostapchenko, Phys. Rev. D 81, 114028 (2010). arXiv:1003.0196 [hep-ph]

    Article  ADS  Google Scholar 

  45. S. Ostapchenko, Phys. Rev. D 77, 034009 (2008). arXiv:hep-ph/0612175

    Article  ADS  Google Scholar 

  46. S. Ostapchenko, Phys. Lett. B 636, 40 (2006). arXiv:hep-ph/0602139

    Article  ADS  Google Scholar 

  47. E. Gotsman, E. Levin, U. Maor, Phys. Lett. B 452, 387 (1999)

    Article  ADS  Google Scholar 

  48. E. Gotsman, E. Levin, U. Maor, Phys. Lett. B 309, 199 (1993)

    Article  ADS  Google Scholar 

  49. E. Gotsman, E. Levin, U. Maor, Phys. Rev. D 49, R4321 (1994)

    Article  ADS  Google Scholar 

  50. I. Gradstein, I. Ryzhik, Tables of Series, Products, and Integrals (MIR, Moscow, 1981)

    Google Scholar 

  51. K.G. Boreskov, A.B. Kaidalov, V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 44, 523 (2005). arXiv:hep-ph/0506211

    Article  ADS  Google Scholar 

  52. H. Kowalski, D. Teaney, Phys. Rev. D 68, 114005 (2003)

    Article  ADS  Google Scholar 

  53. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 77, 052004 (2008). arXiv:0712.0604 [hep-ex]

    Article  ADS  Google Scholar 

  54. V.A. Khoze, A.D. Martin, M.G. Ryskin, Frascati Phys. Ser. 44, 147–160 (2007). arXiv:0705.2314 [hep-ph]

    Google Scholar 

  55. C. Royon, R. Staszewski, A. Dechambre, O. Kepka, PoS DIS2010, 087 (2010). arXiv:1008.0255 [hep-ph]

    Google Scholar 

  56. O. Kepka, C. Royon, Phys. Rev. D 76, 034012 (2007). arXiv:0704.1956 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Levin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotsman, E., Levin, E. & Maor, U. Survival probability of large rapidity gaps in the QCD and N=4 SYM motivated model. Eur. Phys. J. C 71, 1685 (2011). https://doi.org/10.1140/epjc/s10052-011-1685-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-011-1685-3

Keywords

Navigation