Skip to main content
Log in

CMB constraints on non-commutative geometry during inflation

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We investigate the primordial power spectrum of the density perturbations based on the assumption that space is non-commutative in the early stage of inflation, and constrain the contribution from non-commutative geometry using CMB data. Due to the non-commutative geometry, the primordial power spectrum can lose rotational invariance. Using the k-inflation model and slow-roll approximation, we show that the deviation from rotational invariance of the primordial power spectrum depends on the size of non-commutative length scale L s but not on sound speed. We constrain the contributions from the non-commutative geometry to the covariance matrix of the harmonic coefficients of the CMB anisotropies using five-year WMAP CMB maps. We find that the upper bound for L s depends on the product of sound speed and slow-roll parameter. Estimating this product using cosmological parameters from the five-year WMAP results, the upper bound for L s is estimated to be less than 10−27 cm at 99.7% confidence level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.H. Guth, Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  2. A.D. Linde, Phys. Lett. B 108, 389 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Albrecht, P.J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  4. E. Komatsu et al., Astrophys. J. Suppl. 180, 330 (2009). arXiv:0803.0547

    Article  ADS  Google Scholar 

  5. R.H. Brandenberger, J. Martin, Mod. Phys. Lett. A 16, 999 (2001). arXiv:astro-ph/0005432

    Article  MATH  ADS  Google Scholar 

  6. J. Martin, R.H. Brandenberger, Phys. Rev. D 63, 123501 (2001). arXiv:hep-th/0005209

    Article  ADS  Google Scholar 

  7. R.J. Szabo, Phys. Rep. 378, 207 (2003). arXiv:hep-th/0109162

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. N. Seiberg, E. Witten, J. High Energy Phys. 9909, 032 (1999). arXiv:hep-th/9908142

    Article  MathSciNet  ADS  Google Scholar 

  9. R.H. Brandenberger, P.-M. Ho, Phys. Rev. D 66, 023517 (2002). arXiv:hep-th/0203119

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Tsujikawa, R. Maartens, R.H. Brandenberger, Phys. Lett. B 574, 141 (2003). arXiv:astro-ph/0308169

    Article  MATH  ADS  Google Scholar 

  11. Q.-G. Huang, M. Li, J. High Energy Phys. 0306, 014 (2003). arXiv:hep-th/0304203

    Article  ADS  Google Scholar 

  12. F. Lizzi, G. Mangano, G. Miele, M. Peloso, J. High Energy Phys. 0206, 049 (2002). arXiv:hep-th/0203099

    Article  MathSciNet  ADS  Google Scholar 

  13. K. Fang, B. Chen, W. Xue, Phys. Rev. D 77, 063523 (2008). arXiv:0707.1970

    Article  MathSciNet  ADS  Google Scholar 

  14. E. Akofor, A.P. Balachandran, S.G. Jo, A. Joseph, B.A. Qureshi, J. High Energy Phys. 0805, 092 (2008). arXiv:0710.5897

    Article  ADS  Google Scholar 

  15. Y.-f. Cai, Y.-S. Piao, Phys. Lett. B 657, 1 (2007). arXiv:gr-qc/0701114

    Article  MathSciNet  ADS  Google Scholar 

  16. E. Akofor, A.P. Balachandran, A. Joseph, L. Pekowsky, B.A. Qureshi, Phys. Rev. D 79, 063004 (2009). arXiv:0806.2458

    Article  ADS  Google Scholar 

  17. C. Armendariz-Picon, J. Cosmol. Astropart. Phys. 0603, 002 (2006). arXiv:astro-ph/0509893

    Article  ADS  Google Scholar 

  18. A. Hajian, T. Souradeep, Phys. Rev. D 74, 123521 (2006). arXiv:astro-ph/0607153

    Article  ADS  Google Scholar 

  19. C. Armendariz-Picon, L. Pekowsky, Phys. Rev. Lett. 102, 031301 (2009). arXiv:0807.2687

    Article  ADS  Google Scholar 

  20. N.E. Groeneboom, H.K. Eriksen, Astrophys. J. 690, 1807 (2009). arXiv:0807.2242

    Article  ADS  Google Scholar 

  21. A. Hajian, T. Souradeep, Astrophys. J. 597, L5 (2003). arXiv:astro-ph/0308001

    Article  ADS  Google Scholar 

  22. A.R. Pullen, M. Kamionkowski, Phys. Rev. D 76, 103529 (2007). arXiv:0709.1144

    Article  ADS  Google Scholar 

  23. C. Armendariz-Picon, T. Damour, V.F. Mukhanov, Phys. Lett. B 458, 209 (1999). arXiv:hep-th/9904075

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. J. Garriga, V.F. Mukhanov, Phys. Lett. B 458, 219 (1999). arXiv:hep-th/9904176

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. J. Maldacena, J. High Energy Phys. 0305, 013 (2003). arXiv:astro-ph/0210603

    Article  MathSciNet  ADS  Google Scholar 

  26. X. Chen, M.-X. Huang, S. Kachru, G. Shiu, J. Cosmol, Astropart. Phys. 0701, 002 (2007). arXiv:hep-th/0605045

    Google Scholar 

  27. H. Wei, R.-G. Cai, A. Wang, Phys. Lett. B 603, 95 (2004). arXiv:hep-th/0409130

    Article  ADS  Google Scholar 

  28. D. Seery, J.E. Lidsey, J. Cosmol. Astropart. Phys. 0506, 003 (2005). arXiv:astro-ph/0503692

    Article  ADS  Google Scholar 

  29. C.-S. Chu, P.-M. Ho, Nucl. Phys. B 550, 151 (1999). arXiv:hep-th/9812219

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. A. Riotto, Trieste 2002, Astroparticle physics and cosmology, 317 (2002). arXiv:hep-ph/0210162

  31. L. Ackerman, S.M. Carroll, M.B. Wise, Phys. Rev. D 75, 083502 (2007). arXiv:astro-ph/0701357

    Article  ADS  Google Scholar 

  32. C.G. Boehmer, D.F. Mota, Phys. Lett. B 663, 168 (2008). arXiv:0710.2003

    Article  ADS  Google Scholar 

  33. T.S. Koivisto, D.F. Mota, J. Cosmol. Astropart. Phys. 0808, 021 (2008). arXiv:0805.4229

    Article  MathSciNet  ADS  Google Scholar 

  34. G. Hinshaw et al., Astrophys. J. Suppl. 180, 225 (2009). arXiv:0803.0732

    Article  ADS  Google Scholar 

  35. K.M. Gorski, E. Hivon, A.J. Banday, B.D. Wandelt, F.K. Hansen, M. Reinecke, M. Bartelman, Astrophys. J. 622, 759 (2005). arXiv:astro-ph/0409513

    Article  ADS  Google Scholar 

  36. M. Doran, J. Cosmol. Astropart. Phys. 0510, 011 (2005). arXiv:astro-ph/0302138

    ADS  Google Scholar 

  37. J. Dunkley et al., Astrophys. J. Suppl. 180, 306 (2009). arXiv:0803.0586

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khamphee Karwan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karwan, K. CMB constraints on non-commutative geometry during inflation. Eur. Phys. J. C 69, 521–529 (2010). https://doi.org/10.1140/epjc/s10052-010-1421-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1421-4

Keywords

Navigation