Skip to main content
Log in

Notes on non-commutative Chern–Simons quantum mechanics

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We investigate the classical and quantum aspects of non-commutative topological (Chern–Simons) mechanics. We introduce the magnetic field by the minimal substitution in a way which preserves the original symplectic structures. We find that the classical aspect, say, the solutions to the equations of motion, converges to the reduced theory which is obtained by turning off the mass term smoothly. However, the quantum aspect, i.e., the spectra and the angular momenta, does not have such continuous limits. The spectra will become divergent when the mass term is turned off. A scheme is proposed to regularize the spectra so as to get a finite result. In order to verify our regularization scheme, we resort to Dirac theory. We find that there are two constraints during the reduction from the full theory to the reduced one which alter the symplectic structures. The eigenvalues of angular momenta also have no continuous limits, and this situation is similar to the one which has been studied some years ago. The possibility of taking an additional limit is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.V. Dunne, R. Jackiw, C.A. Trugenberger, Phys. Rev. D 41, 661 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Connes, M. Douglas, A.S. Schwarz, J. High Energy Phys. 02, 003 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  3. N. Seiberg, E. Witten, J. High Energy Phys. 09, 032 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  4. M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  5. C.S. Chu, P.M. Ho, Nucl. Phys. B 550, 151 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. C.S. Chu, P.M. Ho, Nucl. Phys. B 568, 447 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. F. Ardalan, H. Arfaei, M.M. Sheikh-Jabbari, Nucl. Phys. B 576, 578 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. J. Jing, Z.-W. Long, Phys. Rev. D 72, 126002 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Jing, Phys. Rev. D 73, 086001 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Minwalla, M. Van Raamsdonk, N. Seiberg, J. High Energy Phys. 02, 020 (2000)

    Article  ADS  Google Scholar 

  11. M. Van Raamsdonk, N. Seiberg, J. High Energy Phys. 03, 035 (2000)

    Article  Google Scholar 

  12. R. Gopakumar, S. Minwalla, A. Strominger, J. High Energy Phys. 05, 020 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  13. V.P. Nair, A.P. Polychronakos, Phys. Lett. B 505, 267 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. B. Morariu, A.P. Polychronakos, Nucl. Phys. B 610, 531 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. D. Karabali, V.P. Nair, A.P. Polychronakos, Nucl. Phys. B 627, 565 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. B. Morariu, A.P. Polychronakos, Nucl. Phys. B 634, 326 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. J. Gamboa, M. Loewe, J.C. Rojas, Phys. Rev. D 64, 067901 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  18. J. Gamboa, M. Loewe, F. Mendez, J.C. Rojas, Mod. Phys. Lett. A 16, 2075 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. J. Gamboa, M. Loewe, F. Mendez, J.C. Rojas, Int. J. Mod. Phys. A 17, 2555 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. J. Jing, S.H. Zhao, Z.W. Long, J.F. Chen, Eur. Phys. J. C 54, 685 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  21. J. Jing, J.Y. Ma, Y.H. Guo, J.F. Chen, Eur. Phys. J. C 56, 591 (2008)

    Article  MathSciNet  Google Scholar 

  22. J. Jing, J.F. Chen, Eur. Phys. J. C 60, 669 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  23. B. Muthukumar, P. Mitra, Phys. Rev. D 66, 027701 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  24. C. Duval, P.A. Horvathy, J. Phys. A, Math. Gen. 34, 10097 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. C. Duval, P.A. Horvathy, Phys. Lett. B 479, 284 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. P.A. Horvathy, Ann. Phys. (N.Y.) 299, 128 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. J.M. Souriau, Structure des Systèmes Dynamiques (Dunod, Paris, 1970)

    MATH  Google Scholar 

  28. J.M. Souriau, Structure of Dynamical Systems: a Symplectic View of Physics (Birkhäuser, Dordrecht, 1997)

    MATH  Google Scholar 

  29. J. Jing, F.-H. Liu, J.-F. Chen, Phys. Rev. D 78, 125004 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  30. A.A. Deriglazov, Phys. Lett. B 555, 83 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. J. Lukierski, P.C. Stichel, W.J. Zakrzewski, Ann. Phys. 306, 78 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. P.A.M. Dirac, Lecture Notes on Quantum Mechanics (Yeshiva University, New York, 1964)

    Google Scholar 

  33. L.D. Faddeev, R. Jackiw, Phys. Rev. Lett. 60, 1692 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jing, J., Cui, Y., Long, ZW. et al. Notes on non-commutative Chern–Simons quantum mechanics. Eur. Phys. J. C 67, 583–588 (2010). https://doi.org/10.1140/epjc/s10052-010-1296-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-010-1296-4

Keywords

Navigation