Skip to main content

Advertisement

Log in

New physics contribution to neutral trilinear gauge boson couplings

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We study the one-loop new physics effects to the CP even triple neutral gauge boson vertices γ γ Z, γ Z Z, Z Z γ and Z ZZ in the context of Little Higgs models. We compute the contribution of the additional fermions in Little Higgs models in the framework of direct product groups where [SU(2)×U(1)]2 gauge symmetry is embedded in SU(5) global symmetry and also in the framework of the simple group where SU(NU(1) gauge symmetry breaks down to SU(2) L ×U(1). We calculate the contribution of the fermions to these couplings when T parity is invoked. In addition, we re-examine the MSSM contribution at the chosen point of SPS1a′ and compare with the SM and Little Higgs models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.L. Bayatian et al. (CMS Collaboration), J. Phys. G 34, 995 (2007)

    Article  ADS  Google Scholar 

  2. A. Djouadi et al. (ILC Collaboration), arXiv:0709.1893 [hep-ph]

  3. G. Gounaris et al., arXiv:hep-ph/9601233

  4. E.N. Argyres, A.B. Lahanas, C.G. Papadopoulos, V.C. Spanos, Phys. Lett. B 383, 63 (1996). arXiv:hep-ph/9603362

    Article  ADS  Google Scholar 

  5. E.N. Argyres, G. Katsilieris, A.B. Lahanas, C.G. Papadopoulos, V.C. Spanos, Nucl. Phys. B 391, 23 (1993)

    Article  ADS  Google Scholar 

  6. A. Arhrib, J.L. Kneur, G. Moultaka, Phys. Lett. B 376, 127 (1996). arXiv:hep-ph/9512437

    Article  ADS  Google Scholar 

  7. G.J. Gounaris, J. Layssac, F.M. Renard, Phys. Rev. D 61, 073013 (2000). arXiv:hep-ph/9910395

    Article  ADS  Google Scholar 

  8. D. Choudhury, S. Dutta, S. Rakshit, S. Rindani, Int. J. Mod. Phys. A 16, 4891 (2001). arXiv:hep-ph/0011205

    Article  ADS  Google Scholar 

  9. R. Armillis, C. Coriano, M. Guzzi, J. High Energy Phys. 0805, 15 (2008). arXiv:0711.3424 [hep-ph]

    Article  ADS  Google Scholar 

  10. U. Baur, E.L. Berger, Phys. Rev. D 47, 4889 (1993)

    Article  ADS  Google Scholar 

  11. U. Baur, T. Han, J. Ohnemus, Phys. Rev. D 57, 2823 (1998)

    Article  ADS  Google Scholar 

  12. U. Baur, D. Rainwater, Phys. Rev. D 52, 112011 (2000) and references therein

    Google Scholar 

  13. J. Deng, FERMILAB-THESIS-2008-37 (2008)

  14. T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 76, 111103 (2007). arXiv:0705.2247 [hep-ex]

    Article  ADS  Google Scholar 

  15. J. Abdallah et al. (DELPHI Collaboration), Eur. Phys. J. C 51, 525 (2007). arXiv:0706.2741 [hep-ex]

    Article  ADS  Google Scholar 

  16. M. Acciarri et al. (L3 Collaboration), Phys. Lett. B 489, 55 (2000). arXiv:hep-ex/0005024

    Article  ADS  Google Scholar 

  17. N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, T. Gregoire, J.G. Wacker, J. High Energy Phys. 0208, 021 (2002). arXiv:hep-ph/0206020

    Article  ADS  MathSciNet  Google Scholar 

  18. N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, J. High Energy Phys. 0207, 034 (2002). arXiv:hep-ph/0206021

    Article  ADS  MathSciNet  Google Scholar 

  19. I. Low, W. Skiba, D. Tucker-Smith, Phys. Rev. D 66, 072001 (2002). arXiv:hep-ph/0207243

    Article  ADS  Google Scholar 

  20. S. Chang, J.G. Wacker, Phys. Rev. D 69, 035002 (2004). arXiv:hep-ph/0303001

    Article  ADS  Google Scholar 

  21. S. Chang, J. High Energy Phys. 0312, 057 (2003). arXiv:hep-ph/0306034

    Article  ADS  Google Scholar 

  22. W. Skiba, J. Terning, Phys. Rev. D 68, 075001 (2003). arXiv:hep-ph/0305302

    Article  ADS  Google Scholar 

  23. D.E. Kaplan, M. Schmaltz, J. High Energy Phys. 0310, 039 (2003). arXiv:hep-ph/0302049

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Schmaltz, J. High Energy Phys. 0408, 056 (2004). arXiv:hep-ph/0407143

    Article  ADS  MathSciNet  Google Scholar 

  25. C. Csaki, J. Hubisz, G.D. Kribs, P. Meade, J. Terning, Phys. Rev. D 68, 035009 (2003). arXiv:hep-ph/0303236

    Article  ADS  Google Scholar 

  26. J.L. Hewett, F.J. Petriello, T.G. Rizzo, J. High Energy Phys. 0310, 062 (2003). arXiv:hep-ph/0211218

    Article  ADS  Google Scholar 

  27. R. Barbieri, A. Pomarol, R. Rattazzi, A. Strumia, Nucl. Phys. B 703, 127 (2004). arXiv:hep-ph/0405040

    Article  MATH  ADS  Google Scholar 

  28. Z. Han, W. Skiba, Phys. Rev. D 72, 035005 (2005). arXiv:hep-ph/0506206

    Article  ADS  Google Scholar 

  29. G. Marandella, C. Schappacher, A. Strumia, Phys. Rev. D 72, 035014 (2005). arXiv:hep-ph/0502096

    Article  ADS  Google Scholar 

  30. H.C. Cheng, I. Low, J. High Energy Phys. 0309, 051 (2003). arXiv:hep-ph/0308199

    Article  ADS  Google Scholar 

  31. J. Hubisz, P. Meade, Phys. Rev. D 71, 035016 (2005). arXiv:hep-ph/0411264

    Article  ADS  Google Scholar 

  32. J. Hubisz, S.J. Lee, G. Paz, J. High Energy Phys. 0606, 041 (2006). arXiv:hep-ph/0512169

    Article  ADS  Google Scholar 

  33. J. Hubisz, P. Meade, A. Noble, M. Perelstein, J. High Energy Phys. 0601, 135 (2006). arXiv:hep-ph/0506042

    Article  ADS  Google Scholar 

  34. S.R. Choudhury, N. Gaur, A. Goyal, N. Mahajan, Phys. Lett. B 601, 164 (2004). arXiv:hep-ph/0407050

    Article  ADS  Google Scholar 

  35. M. Blanke, A.J. Buras, A. Poschenrieder, C. Tarantino, S. Uhlig, A. Weiler, J. High Energy Phys. 0612, 003 (2006). arXiv:hep-ph/0605214

    ADS  Google Scholar 

  36. M. Blanke, A.J. Buras, A. Poschenrieder, S. Recksiegel, C. Tarantino, S. Uhlig, A. Weiler, J. High Energy Phys. 0701, 066 (2007). arXiv:hep-ph/0610298

    Article  ADS  Google Scholar 

  37. A. Goyal, Mod. Phys. Lett. A 21, 1931 (2006)

    Article  MATH  ADS  Google Scholar 

  38. S.R. Choudhury, N. Gaur, A. Goyal, Phys. Rev. D 72, 097702 (2005). arXiv:hep-ph/0508146

    Article  ADS  Google Scholar 

  39. M. Blanke, A.J. Buras, B. Duling, A. Poschenrieder, C. Tarantino, J. High Energy Phys. 0705, 013 (2007). arXiv:hep-ph/0702136

    Article  ADS  Google Scholar 

  40. K. Hagiwara, R.D. Pecci, D. Zepanfeld, K. Hikasa, Nucl. Phys. B 282, 253 (1987)

    Article  ADS  Google Scholar 

  41. T. Han, H.E. Logan, L.T. Wang, J. High Energy Phys. 0601, 099 (2006). arXiv:hep-ph/0506313

    Article  ADS  Google Scholar 

  42. R. Barbieri, A. Pomaral, R. Rattazi, A. Strumia, Nucl. Phys. B 703, 127 (2004)

    Article  MATH  ADS  Google Scholar 

  43. J.A. Aguilar-Saavedra, et al., Eur. Phys. J. C. arXiv:hep-ph/0511344V1 (2006)

  44. G. Passarino, M. Veltman, Nucl. Phys. B 160, 151 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, S., Goyal, A. & Mamta New physics contribution to neutral trilinear gauge boson couplings. Eur. Phys. J. C 63, 305–315 (2009). https://doi.org/10.1140/epjc/s10052-009-1103-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-1103-2

PACS

Navigation