Skip to main content
Log in

Can the RHIC J/ψ puzzle(s) be settled at LHC?

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

One observes strong suppression effects for hard probes, e.g. the production of J/ψ or high-p T particles, in nucleus–nucleus (AA) collisions at RHIC. Surprisingly, the magnitude of the suppression is quite similar to that at SPS. In order to establish whether these features arise due to the presence of a thermalized system of quarks and gluons formed in the course of the collision, one should investigate the impact of suppression mechanisms which do not explicitly involve such a state. We calculate shadowing for gluons in the Glauber–Gribov theory and propose a model invoking a rapidity-dependent absorptive mechanism motivated by energy-momentum conservation effects. Furthermore, final-state suppression due to interaction with comoving matter (hadronic or pre-hadronic) has been shown to describe the data at SPS. We extend this model by including the backward reaction channel, i.e. recombination of open charm, which is estimated directly from pp data at RHIC. Strong suppression of charmonium both in pA and AA collisions at LHC is predicted. This is in stark contrast with the predictions of models assuming QGP formation and thermalization of heavy quarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Adare (PHENIX Collaboration), Phys. Rev. Lett. 98, 232301 (2007)

    Article  ADS  Google Scholar 

  2. B. Alessandro (NA50 Collaboration), Eur. Phys. J. C 39, 335 (2005)

    Article  Google Scholar 

  3. L. Ramello (NA50 Collaboration), Nucl. Phys. A 715, 243c (2003)

    Article  ADS  Google Scholar 

  4. P. Cortese (for the NA60 Collaboration), these proceedings

  5. H. Wöhri, these proceedings

  6. M. Bedjidian et al., arXiv:hep-ph/0311048

  7. S.S. Adler (PHENIX Collaboration), Phys. Rev. Lett. 96, 012304 (2006)

    Article  ADS  Google Scholar 

  8. A. Adare (PHENIX Collaboration), Phys. Rev. C 77, 024912 (2008)

    Article  ADS  Google Scholar 

  9. D.M. Alde , Phys. Rev. Lett. 66, 133 (1991)

    Article  ADS  Google Scholar 

  10. M.J. Leitch (FNAL E866/NuSea Collaboration), Phys. Rev. Lett. 84, 3256 (2000)

    Article  ADS  Google Scholar 

  11. K. Boreskov, A. Capella, A. Kaidalov, J. Tran Thanh Van, Phys. Rev. D 47, 919 (1993)

    Article  ADS  Google Scholar 

  12. M.A. Braun, C. Pajares, C.A. Salgado, N. Armesto, A. Capella, Nucl. Phys. B 509, 357 (1998)

    Article  ADS  Google Scholar 

  13. V.N. Gribov, Sov. Phys. JETP 29, 483 (1969)

    ADS  Google Scholar 

  14. V.N. Gribov, Sov. Phys. JETP 30, 709 (1970)

    ADS  Google Scholar 

  15. V.N. Gribov, Sov. Phys. JETP 26, 414 (1968)

    ADS  Google Scholar 

  16. A. Capella, E.G. Ferreiro, Phys. Rev. C 76, 064906 (2007)

    Article  ADS  Google Scholar 

  17. A. Capella, A. Kaidalov, Nucl. Phys. B 111, 477 (1976)

    Article  ADS  Google Scholar 

  18. I.C. Arsene, L. Bravina, A.B. Kaidalov, K. Tywoniuk, E. Zabrodin, Phys. Lett. B 660, 176 (2008)

    Article  ADS  Google Scholar 

  19. K. Tywoniuk, I. Arsene, L. Bravina, A. Kaidalov, E. Zabrodin, Phys. Lett. B 657, 170 (2007)

    Article  ADS  Google Scholar 

  20. A. Capella, A. Kaidalov, A. Kouider Akil, C. Gerschel, Phys. Lett. B 393, 431 (1997)

    Article  ADS  Google Scholar 

  21. N. Armesto, A. Capella, E.G. Ferreiro, Phys. Rev. C 59, 395 (1999)

    Article  ADS  Google Scholar 

  22. A. Capella, E.G. Ferreiro, A.B. Kaidalov, Phys. Rev. Lett. 85, 2080 (2000)

    Article  ADS  Google Scholar 

  23. A. Capella, D. Sousa, nucl-th/0303055

  24. A. Capella, E.G. Ferreiro, Eur. Phys. J. C 42, 419 (2005)

    Article  ADS  Google Scholar 

  25. R.L. Thews, M. Schroedter, J. Rafelski, Phys. Rev. C 63, 054905 (2001)

    Article  ADS  Google Scholar 

  26. L. Grandchamp, R. Rapp, G.E. Brown, Phys. Rev. Lett. 92, 212301 (2004)

    Article  ADS  Google Scholar 

  27. X. Zhao, R. Rapp, Phys. Lett. B 664, 253 (2008)

    Article  ADS  Google Scholar 

  28. P. Braun-Munzinger, J. Stachel, Phys. Lett. B 490, 196 (2000)

    Article  ADS  Google Scholar 

  29. M.I. Gorenstein, A.P. Kostyuk, H. Stöcker, W. Greiner, Phys. Lett. B 509, 277 (2001)

    Article  ADS  Google Scholar 

  30. O. Linnyk, E.L. Bratkovskaya, W. Cassing, Nucl. Phys. A 807, 79 (2008)

    Article  ADS  Google Scholar 

  31. A. Capella, L. Bravina, E.G. Ferreiro, A.B. Kaidalov, K. Tywoniuk, E. Zabrodin, arXiv:0712.4331 [hep-ph]

  32. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 659, 149 (2008)

    Article  ADS  Google Scholar 

  33. H. van Hees, M. Mannarelli, V. Greco, R. Rapp, Phys. Rev. Lett. 100, 192301 (2008)

    Article  ADS  Google Scholar 

  34. F. Karsch, H. Satz, Z. Phys. C 51, 209 (1991)

    Article  Google Scholar 

  35. J.F. Gunion, R. Vogt, Nucl. Phys. B 492, 301 (1997)

    ADS  Google Scholar 

  36. L. Grandchamp, S. Lumpkins, D. Sun, H. van Hees, R. Rapp, Phys. Rev. C 73, 064906 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tywoniuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravina, L., Capella, A., Ferreiro, E.G. et al. Can the RHIC J/ψ puzzle(s) be settled at LHC?. Eur. Phys. J. C 61, 865–870 (2009). https://doi.org/10.1140/epjc/s10052-009-0906-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-0906-5

PACS

Navigation