Skip to main content
Log in

Forward and midrapidity charmonium production at RHIC

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

J/ψ production at forward and midrapidity at the Relativistic Heavy-Ion Collider (RHIC) is calculated within a previously constructed rate-equation approach accounting for both direct production and regeneration from c and \(\bar{c}\) . The results are compared to the experimental data. The observed stronger suppression at forward rapidity can be qualitatively explained by a smaller statistical regeneration component together with stronger cold nuclear matter induced suppression compared to midrapidity. The χ c over J/ψ ratio and ψ′ over J/ψ ratio are also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)

    Article  ADS  Google Scholar 

  2. L. Ramello (NA50 Collaboration), Nucl. Phys. A 715, 243 (2003)

    Article  ADS  Google Scholar 

  3. A. Adare (PHENIX Collaboration), Phys. Rev. Lett. 98, 232301 (2007)

    Article  ADS  Google Scholar 

  4. P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 690, 119 (2001)

    Article  ADS  Google Scholar 

  5. L. Grandchamp, R. Rapp, G.E. Brown, Phys. Rev. Lett. 92, 212301 (2004)

    Article  ADS  Google Scholar 

  6. X. Zhao, R. Rapp, Phys. Lett. B 664, 253 (2008)

    Article  ADS  Google Scholar 

  7. L. Grandchamp, R. Rapp, Phys. Lett. B 523, 60 (2001)

    Article  ADS  Google Scholar 

  8. R. Rapp, D. Blaschke, P. Crochet, arXiv:0807.2470 [hep-ph]

  9. R.L. Thews, M.L. Mangano, Phys. Rev. C 73, 014904 (2006)

    Article  ADS  Google Scholar 

  10. M.E. Peskin, Nucl. Phys. B 156, 365 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Bhanot, M.E. Peskin, Nucl. Phys. B 156, 391 (1979)

    Article  ADS  Google Scholar 

  12. A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Nucl. Phys. A 789, 334 (2007)

    Article  ADS  Google Scholar 

  13. N. Armesto, A. Capella, Phys. Lett. B 430, 23 (1998)

    Article  ADS  Google Scholar 

  14. A. Capella, L. Bravina, E.G. Ferreiro, A.B. Kaidalov, K. Tywoniuk, E. Zabrodin, arXiv:0712.4331 [hep-ph]

  15. O. Linnyk, E.L. Bratkovskaya, W. Cassing, Nucl. Phys. A 807, 79 (2008)

    Article  ADS  Google Scholar 

  16. C.W. De Jager, H. De Vries, C. De Vries, At. Data Nucl. Data Tables 14, 479 (1974)

    Article  ADS  Google Scholar 

  17. A. Adare (PHENIX Collaboration), Phys. Rev. C 77, 024912 (2008)

    Article  ADS  Google Scholar 

  18. N.S. Topilskaya (NA50 Collaboration), Nucl. Phys. A 715, 675 (2003)

    Article  ADS  Google Scholar 

  19. X. Zhao, R. Rapp, arXiv:0806.1239 [nucl-th]

  20. M. Asakawa, T. Hatsuda, Phys. Rev. Lett. 92, 012001 (2004)

    Article  ADS  Google Scholar 

  21. D. Cabrera, R. Rapp, Phys. Rev. D 76, 114506 (2007)

    Article  ADS  Google Scholar 

  22. F. Karsch, R. Petronzio, Phys. Lett. B 193, 105 (1987)

    Article  ADS  Google Scholar 

  23. J.P. Blaizot, J.Y. Ollitrault, Phys. Rev. D 39, 232 (1989)

    Article  ADS  Google Scholar 

  24. J. Huefner, P.F. Zhuang, Phys. Lett. B 559, 193 (2003)

    Article  ADS  Google Scholar 

  25. I. Arsene (BRAHMS Collaboration), Nucl. Phys. A 757, 1 (2005)

    Article  ADS  Google Scholar 

  26. B.B. Back , Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  27. K. Adcox (PHENIX Collaboration), Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  28. P. Braun-Munzinger, K. Redlich, J. Stachel, arXiv:nucl-th/0304013

  29. M. Cheng , Phys. Rev. D 74, 054507 (2006)

    Article  ADS  Google Scholar 

  30. A. Adare (PHENIX Collaboration), Phys. Rev. Lett. 97, 252002 (2006)

    Article  ADS  Google Scholar 

  31. M. Cacciari, P. Nason, R. Vogt, Phys. Rev. Lett. 95, 122001 (2005)

    Article  ADS  Google Scholar 

  32. J. Cleymans, K. Redlich, E. Suhonen, Z. Phys. C 51, 137 (1991)

    Article  Google Scholar 

  33. M.I. Gorenstein, A.P. Kostyuk, H. Stoecker, W. Greiner, Phys. Lett. B 509, 277 (2001)

    Article  ADS  Google Scholar 

  34. V. Greco, C.M. Ko, R. Rapp, Phys. Lett. B 595, 202 (2004)

    Article  ADS  Google Scholar 

  35. L. Yan, P. Zhuang, N. Xu, Phys. Rev. Lett. 97, 232301 (2006)

    Article  ADS  Google Scholar 

  36. E. Schnedermann, J. Sollfrank, U.W. Heinz, Phys. Rev. C 48, 2462 (1993)

    Article  ADS  Google Scholar 

  37. A. Adare (PHENIX Collaboration), Phys. Rev. Lett. 98, 232002 (2007)

    Article  ADS  Google Scholar 

  38. S. Gavin, R. Vogt, Nucl. Phys. B 345, 104 (1990)

    Article  ADS  Google Scholar 

  39. F. Karsch, R. Petronzio, Z. Phys. C 37, 627 (1988)

    Article  ADS  Google Scholar 

  40. W.M. Yao (Particle Data Group), J. Phys. G 33, 1 (2006)

    Article  ADS  Google Scholar 

  41. M.C. Abreu (NA50 Collaboration), Phys. Lett. B 499, 85 (2001)

    Article  ADS  Google Scholar 

  42. H. van Hees, M. Mannarelli, V. Greco, R. Rapp, Phys. Rev. Lett. 100, 192301 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingbo Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Rapp, R. Forward and midrapidity charmonium production at RHIC. Eur. Phys. J. C 62, 109–117 (2009). https://doi.org/10.1140/epjc/s10052-009-0905-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-0905-6

PACS

Navigation