Skip to main content
Log in

Constraints on unparticle interactions from particle and antiparticle oscillations

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Unparticles have dramatic effects on particle and antiparticle oscillations in meson–antimeson and muonium–antimuonium systems. Unlike the usual tree-level contributions to meson oscillations from heavy-particle exchange, which results in a small Γ 12, the unparticle may have sizeable contributions to both M 12 and Γ 12 due to the fractional dimension \(d_{\mathcal{U}}\) of the unparticle. If the unparticle effect dominates the contributions (which may happen in D 0\(\bar{D}^{0}\) mixing) to the meson mixing parameters x and y, we find that \(x/y=\cot(\pi d_{\mathcal{U}})\) . The mass difference Δm in meson mixing can provide interesting constraints on the unparticle interactions. The unparticle interaction can significantly enhance the CP asymmetry in meson mixing, which can be tested in more accurate experiments in the future. Interesting constraints on unparticle and particle interactions can also be obtained using muonion and antimuonion oscillation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Georgi, Phys. Rev. Lett. 98, 221601 (2007). arXiv:hep-ph/0703260

    Article  ADS  Google Scholar 

  2. H. Georgi, Phys. Lett. B 650, 275 (2007). arXiv:0704.2457 [hep-ph]

    Article  ADS  Google Scholar 

  3. T. Banks, A. Zaks, Nucl. Phys. B 196, 189 (1902)

    Article  ADS  Google Scholar 

  4. K. Cheung, W.Y. Keung, T.C. Yuan, Phys. Rev. Lett. 99, 051803 (2007). arXiv:0704.2588 [hep-ph]

    Article  ADS  Google Scholar 

  5. P.J. Fox, A. Rajaraman, Y. Shirman, (2007). arXiv:0705.3092 [hep-ph]

  6. N. Greiner, Phys. Lett. B 653, 75 (2007). arXiv:0705.3518 [hep-ph]

    Article  ADS  Google Scholar 

  7. S.L. Chen, X.G. He, Phys. Rev. D 76, 091702 (2007). arXiv:0705.3946 [hep-ph]

    Article  ADS  Google Scholar 

  8. P. Mathews, V. Ravindran, (2007). arXiv:0705.4599 [hep-ph]

  9. M. Bander, J.L. Feng, A. Rajaraman, Y. Shirman, (2007). arXiv:0706.2677 [hep-ph]

  10. T.G. Rizzo, (2007). arXiv:0706.3025 [hep-ph]

  11. K. Cheung, W.Y. Keung, T.C. Yuan, Phys. Rev. D 76, 055003 (2007). arXiv:0706.3155 [hep-ph]

    Article  ADS  Google Scholar 

  12. T. Kikuchi, N. Okada, (2007). arXiv:0707.0893 [hep-ph]

  13. D. Choudhury, D.K. Ghosh, (2007). arXiv:0707.2074 [hep-ph]

  14. H. Zhang, C.S. Li, Z. Li, (2007). arXiv:0707.2132 [hep-ph]

  15. N.G. Deshpande, X.G. He, J. Jiang, Phys. Lett. B 656, 91–95 (2007). arXiv:0707.2959 [hep-ph]

    Article  ADS  Google Scholar 

  16. A. Delgado, J.R. Espinosa, M. Quiros, (2007). arXiv:0707.4309 [hep-ph]

  17. M.X. Luo, W. Wu, G.H. Zhu, (2007). arXiv:0708.0671 [hep-ph]

  18. A.T. Alan, N.K. Pak, (2007). arXiv:0708.3802 [hep-ph]

  19. T.I. Hur, P. Ko, X.H. Wu, (2007). arXiv:0709.0629 [hep-ph]

  20. S. Majhi, (2007). arXiv:0709.1960 [hep-ph]

  21. M.C. Kumar, P. Mathews, V. Ravindran, A. Tripathi, (2007). arXiv:0709.2478 [hep-ph]

  22. K.M. Cheung, W.Y. Keung, T.C. Yuan, (2007). arXiv:0710.2230 [hep-ph]

  23. G.J. Ding, M.L. Yan, (2007). arXiv:0705.0794 [hep-ph]

  24. Y. Liao, Phys. Rev. D 76, 056006 (2007). arXiv:0705.0837 [hep-ph]

    Article  ADS  Google Scholar 

  25. S. Zhou, (2007). arXiv:0706.0302 [hep-ph]

  26. G.J. Ding, M.L. Yan, (2007). arXiv:0706.0325 [hep-ph]

  27. S.L. Chen, X.G. He, H.C. Tsai, J. High Energy Phys. 0711, 010 (2007). arXiv:0707.0187 [hep-ph]

    Article  ADS  Google Scholar 

  28. R. Zwicky, (2007). arXiv:0707.0677 [hep-ph]

  29. X.Q. Li, Y. Liu, Z.T. Wei, (2007). arXiv:0707.2285 [hep-ph]

  30. G. Bhattacharyya, D. Choudhury, D.K. Ghosh, (2007). arXiv:0708.2835 [hep-ph]

  31. A.B. Balantekin, K.O. Ozansoy, (2007). arXiv:0710.0028 [hep-ph]

  32. E.O. Iltan, (2007). arXiv:0710.2677 [hep-ph]

  33. M. Luo, G. Zhu, (2007). arXiv:0704.3532 [hep-ph]

  34. C.H. Chen, C.Q. Geng, (2007). arXiv:0705.0689 [hep-ph]

  35. X.Q. Li, Z.T. Wei, Phys. Lett. B 651, 380 (2007). arXiv:0705.1821 [hep-ph]

    Article  ADS  Google Scholar 

  36. R. Mohanta, A.K. Giri, (2007). arXiv:0707.1234 [hep-ph]

  37. A. Lenz, Phys. Rev. D 76, 065006 (2007). arXiv:0707.1535 [hep-ph]

    Article  ADS  Google Scholar 

  38. T.M. Aliev, A.S. Cornell, N. Gaur, (2007). arXiv:0705.1326 [hep-ph]

  39. C.D. Lu, W. Wang, Y.M. Wang, Phys. Rev. D 76, 077701 (2007). arXiv:0705.2909 [hep-ph]

    Article  ADS  Google Scholar 

  40. D. Choudhury, D.K. Ghosh, Mamta, (2007). arXiv:0705.3637 [hep-ph]

  41. T.M. Aliev, A.S. Cornell, N. Gaur, J. High Energy Phys. 0707, 072 (2007). arXiv:0705.4542 [hep-ph]

    Article  ADS  Google Scholar 

  42. C.H. Chen, C.Q. Geng, Phys. Rev. D 76, 036007 (2007). arXiv:0706.0850 [hep-ph]

    Article  ADS  Google Scholar 

  43. C.S. Huang, X.H. Wu, (2007). arXiv:0707.1268 [hep-ph]

  44. R. Mohanta, A.K. Giri, Phys. Rev. D 76, 057701 (2007). arXiv:0707.3308 [hep-ph]

    Article  ADS  Google Scholar 

  45. C.H. Chen, C.Q. Geng, (2007). arXiv:0709.0235 [hep-ph]

  46. G.J. Ding, M.L. Yan, (2007). arXiv:0709.3435 [hep-ph]

  47. T.M. Aliev, M. Savci, (2007). arXiv:0710.1505 [hep-ph]

  48. Y. Liao, J.Y. Liu, (2007). arXiv:0706.1284 [hep-ph]

  49. H. Goldberg, P. Nath, (2007). arXiv:0706.3898 [hep-ph]

  50. N.G. Deshpande, S.D.H. Hsu, J. Jiang, (2007). arXiv:0708.2735 [hep-ph]

  51. S. Das, S. Mohanty, K. Rao, (2007). arXiv:0709.2583 [hep-ph]

  52. H. Davoudiasl, (2007). arXiv:0705.3636 [hep-ph]

  53. S. Hannestad, G. Raffelt, Y.Y.Y. Wong, (2007). arXiv:0708.1404 [hep-ph]

  54. P.K. Das, (2007). arXiv:0708.2812 [hep-ph]

  55. D. Majumdar, (2007). arXiv:0708.3485 [hep-ph]

  56. A. Freitas, D. Wyler, (2007). arXiv:0708.4339 [hep-ph]

  57. L. Anchordoqui, H. Goldberg, (2007). arXiv:0709.0678 [hep-ph]

  58. J. McDonald, (2007). arXiv:0709.2350 [hep-ph]

  59. M.A. Stephanov, Phys. Rev. D 76, 035008 (2007). arXiv:0705.3049 [hep-ph]

    Article  ADS  Google Scholar 

  60. Y. Nakayama, (2007). arXiv:0707.2451 [hep-ph]

  61. T.A. Ryttov, F. Sannino, (2007). arXiv:0707.3166 [hep-th]

  62. M. Neubert, (2007). arXiv:0708.0036 [hep-ph]

  63. Y. Liao, (2007). arXiv:0708.3327 [hep-ph]

  64. I. Gogoladze, N. Okada, Q. Shafi, (2007). arXiv:0708.4405 [hep-ph]

  65. M. Okamoto, PoS LAT2005, 013 (2006). arXiv:hep-lat/0510113

    MathSciNet  Google Scholar 

  66. M. Staric et al. (Belle Collaboration), Phys. Rev. Lett. 98, 211803 (2007). arXiv:hep-ex/0703036

    Article  ADS  Google Scholar 

  67. K. Abe et al. (BELLE Collaboration), (2007). arXiv:0704.1000 [hep-ex]

  68. B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 98, 211802 (2007). arXiv:hep-ex/0703020

    Article  ADS  Google Scholar 

  69. Heavy Flavour Average Group (HFAG), http://www.slac.stanford.edu/xorg/hfag/charm/index.html

  70. W.M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006)

    Article  ADS  Google Scholar 

  71. Heavy Flavour Average Group (HFAG), for the 2007 web update of the Particle Data Group review. http://www.slac.stanford.edu/xorg/hfag/osc/PDG_2007/#DG

  72. A. Lenz, U. Nierste, J. High Energy Phys. 06, 072 (2007). arXiv:hep-ph/0612167

    Article  ADS  Google Scholar 

  73. A. Abulencia et al. (CDF Collaboration), (2006). arXiv:hep-ex/0609040

  74. A. Abulencia (CDF–Run II Collaboration), Phys. Rev. Lett. 97, 062003 (2006). arXiv:hep-ex/0606027

    Article  ADS  Google Scholar 

  75. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. Lett. 97, 021802 (2006). arXiv:hep-ex/0603029

    Article  ADS  Google Scholar 

  76. J. Amato et al., Phys. Rev. Lett. 21, 1709 (1968)

    Article  ADS  Google Scholar 

  77. G. Cvetic et al., Phys. Rev. D 71, 113013 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  78. B. Liu, (2008). arXiv:0806.0884 [hep-ph]

  79. L. Willmann et al., Phys. Rev. Lett. 82, 49 (1999). arXiv:hep-ex/9807011

    Article  ADS  Google Scholar 

  80. G. Feinberg, S. Weinberg, Phys. Rev. Lett. 6, 381 (1961)

    Article  ADS  Google Scholar 

  81. G. Feinberg, S. Weinberg, Phys. Rev. 123, 1439 (1961)

    Article  ADS  Google Scholar 

  82. M.L. Swartz, Phys. Rev. D 40, 1521 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  83. W.S. Hou, G.G. Wong, Phys. Rev. D 53, 1537 (1996). arXiv:hep-ph/9504311

    Article  ADS  Google Scholar 

  84. V. Pleitez, Phys. Rev. D 61, 057903 (2000). arXiv:hep-ph/9905406

    Article  ADS  Google Scholar 

  85. K. Horikawa, K. Sasaki, Phys. Rev. D 53, 560 (1996). arXiv:hep-ph/9504218

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Gang He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, SL., He, XG., Li, XQ. et al. Constraints on unparticle interactions from particle and antiparticle oscillations. Eur. Phys. J. C 59, 899–906 (2009). https://doi.org/10.1140/epjc/s10052-008-0823-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0823-z

Keywords

Navigation