Skip to main content
Log in

Constraints on the leading-twist pion distribution amplitude from a QCD light-cone sum rule with chiral current

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We present an improved analysis of the constraints on the first two Gegenbauer moments, a π2 and a π4 , of the pion’s leading-twist distribution amplitude from a QCD light-cone sum rule analysis of the Bπ weak transition form factor f +(q 2). A proper chiral current is adopted in QCD light-cone sum rules so as to eliminate the most uncertain twist-3 contributions to f +(q 2), and then we concentrate our attention on the properties of the leading-twist pionic DA. A nearly model-independent f +(q 2), based on the spectrum of Bπ l ν decays from BaBar, together with uncertainties, is adopted as the standard shape for f +(q 2) for our discussion. From a minimum χ 2-fit and by taking the theoretical uncertainties into account, we obtain a π2 (1 GeV)=0.17 +0.15−0.17 and a π4 (1 GeV)=−0.06 +0.20−0.22 at the 1σ confidence level for m *b ∈[4.7,4,8] GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  2. G.P. Lepage, S.J. Brodsky, Phys. Lett. B 87, 359 (1979)

    Article  ADS  Google Scholar 

  3. V.L. Chernyak, A.R. Zhitniksky, Nucl. Phys. B 201, 492 (1982)

    Article  ADS  Google Scholar 

  4. V.L. Chernyak, A.R. Zhitniksky, Nucl. Phys. B 214, 547 (1983), Erratum

    Article  Google Scholar 

  5. V.L. Chernyak, hep-ph/0605327

  6. A.P. Bakulev, S.V. Mikhailov, N.G. Stefanis, Phys. Lett. B 578, 91 (2004)

    Article  ADS  Google Scholar 

  7. P. Ball, V.M. Braun, A. Lenz, J. High Energy Phys. 0605, 004 (2006)

    Article  ADS  Google Scholar 

  8. V. Savinov et al. (CLEO collaboration), hep-ex/9707028

  9. J. Gronberg et al. (CLEO collaboration), Phys. Rev. D 57, 33 (1998)

    Article  ADS  Google Scholar 

  10. T. Huang, X.-G. Wu, Int. J. Mod. Phys. A 22, 3065 (2007)

    Article  ADS  Google Scholar 

  11. T. Huang, X.-Ga. Wu, Phys. Rev. D 71, 034018 (2005)

    Article  ADS  Google Scholar 

  12. P. Ball, R. Zwicky, Phys. Rev. D 71, 014015 (2005)

    Article  ADS  Google Scholar 

  13. P. Ball, J. High Energy Phys. 9809, 005 (1998)

    Article  ADS  Google Scholar 

  14. P. Ball, R. Zwicky, J. High Energy Phys. 0110, 019 (2001)

    Article  ADS  Google Scholar 

  15. P. Ball, R. Zwichk, Phys. Lett. B 625, 225 (2005)

    Article  ADS  Google Scholar 

  16. T. Huang, Z.H. Li, X.Y. Wu, Phys. Rev. D 63, 094001 (2001)

    Article  ADS  Google Scholar 

  17. Z.G. Wang, M.Z. Zhou, T. Huang, Phys. Rev. D 67, 094006 (2003)

    Article  ADS  Google Scholar 

  18. X.-G. Wu, T. Huang, Z.-Y. Fang, Phys. Rev. D 77, 074001 (2008)

    Article  ADS  Google Scholar 

  19. P. Ball, Phys. Lett. B 644, 38 (2007)

    Article  ADS  Google Scholar 

  20. M. Bona et al. (UTfit Collaboration), J. High Energy Phys. 0610, 081 (2006)

    Google Scholar 

  21. J. Charles et al. (CKMfitter Group), Eur. Phys. J. C 41, 1 (2005)

    Article  ADS  Google Scholar 

  22. B. Aubert et al. (BaBar Collaboration), hep-ex/0607060

  23. D. Becirevic, A.B. Kaidalov, Phys. Lett. B 478, 417 (2000)

    Article  ADS  Google Scholar 

  24. P. Ball, R. Zwicky, Phys. Rev. D 71, 014015 (2005)

    Article  ADS  Google Scholar 

  25. C.G. Boyd, B. Grinstein, R.F. Lebed, Phys. Rev. Lett. 74, 4603 (1995)

    Article  ADS  Google Scholar 

  26. C. Albertus et al., Phys. Rev. D 72, 033002 (2005)

    Article  ADS  Google Scholar 

  27. A. Khodjamirian, R. Ruckl, hep-ph/9801443

  28. K. Ikado et al. (Belle Collaboration), Phys. Rev. Lett. 97, 251802 (2006)

    Article  ADS  Google Scholar 

  29. Z.G. Wang, M.Z. Zhou, T. Huang, Phys. Rev. D 67, 094006 (2003)

    Article  ADS  Google Scholar 

  30. A. Khodjamirian, R. Ruckl, S. Weinzierl, O.I. Yakovlev, Phys. Lett. B 410, 275 (1997)

    Article  ADS  Google Scholar 

  31. P. Colangelo, A. Khodjamirian, in At the Frontier of Particle Physics, vol. 3, ed. by M. Shiftman (World Scientific, Singapore, 2001), p. 1495, hep-ph/0010175

    Google Scholar 

  32. A.P. Bakulev, S.V. Mikhailov, N.G. Stefanis, Phys. Lett. B 508, 279 (2001)

    Article  ADS  Google Scholar 

  33. A.P. Bakulev, S.V. Mikhailov, N.G. Stefanis, Phys. Rev. D 70, 033014 (2004)

    Article  ADS  Google Scholar 

  34. A. Schmedding, O.I. Yakovlev, Phys. Rev. D 62, 116002 (2000)

    Article  ADS  Google Scholar 

  35. T. Huang, Z.H. Li, X.G. Wu, F. Zuo, A review of the application of the LCSR with chiral current, in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Gang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XG. Constraints on the leading-twist pion distribution amplitude from a QCD light-cone sum rule with chiral current. Eur. Phys. J. C 57, 665–669 (2008). https://doi.org/10.1140/epjc/s10052-008-0709-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0709-0

PACS

Navigation