Skip to main content
Log in

A QCD motivated model for soft interactions at high energies

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this paper we develop an approach to soft scattering processes at high energies which is based on two elements: the Good–Walker mechanism for low mass diffraction and multi-pomeron interactions for high mass diffraction. The principal idea, which allows us to specify the theory for pomeron interactions, is that the so called soft processes occur at rather short distances (r 2 1/〈p t 2 α≈0.01 GeV−2), where perturbative QCD is valid. The value of the pomeron slope α is obtained from a fit to the experimental data. Using this theoretical approach, we suggest a model that fits all soft data in the ISR-Tevatron energy range: total, elastic, single and double diffractive cross sections, as well as the t dependence of the differential elastic cross section, and the mass dependence of single diffraction. In this model we calculate the survival probability of diffractive Higgs production, and we obtain a value for this observable that is smaller than 1% at the LHC energy range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.D.B. Collins, An Introduction to Regge Theory and High Energy Physics (Cambridge University Press, Cambridge, 1977)

    Google Scholar 

  2. L. Caneschi (ed.), Regge Theory of Low- p T Hadronic Interaction (North-Holland, Amsterdam, 1989)

    Google Scholar 

  3. E. Levin, An Introduction to Pomerons, arXiv:hep-ph/9808486. Everything About Reggeons. I: Reggeons in *Soft* Interaction, arXiv:hep-ph/9710546

  4. E. Gotsman, E. Levin, U. Maor, Phys. Lett. B 452, 387 (1999)

    Article  ADS  Google Scholar 

  5. E. Gotsman, E. Levin, U. Maor, Phys. Lett. B 309, 199 (1993)

    Article  ADS  Google Scholar 

  6. E. Gotsman, E. Levin, U. Maor, Phys. Rev. D 49, R4321 (1994)

    Article  ADS  Google Scholar 

  7. V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 18, 167 (2000)

    Article  ADS  Google Scholar 

  8. V.A. Khoze, A.D. Martin, M.G. Ryskin, Phys. Lett. B 643, 93 (2006)

    Article  ADS  Google Scholar 

  9. A.B. Kaidalov, V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 31, 387 (2003)

    Article  ADS  Google Scholar 

  10. A.B. Kaidalov, V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 33, 261 (2004)

    Article  ADS  Google Scholar 

  11. E. Gotsman, E. Levin, U. Maor, A Soft Interaction Model at Ultra High Energies: Amplitudes, Cross Sections and Survival Probabilities, arXiv:0708.1506 [hep-ph]

  12. M.G. Ryskin, A.D. Martin, V.A. Khoze, Eur. Phys. J. C 54, 199 (2008), arXiv:0710.2494 [hep-ph]

    Article  ADS  Google Scholar 

  13. V.N. Gribov, Space-time description of hadron interactions at high energies, arXiv:hep-ph/0006158

  14. V.N. Gribov, Sov. J. Nucl. Phys. 9, 369 (1969)

    ADS  Google Scholar 

  15. V.N. Gribov, Yad. Fiz. 9, 640 (1969)

    Google Scholar 

  16. A. Donnachie, P.V. Landshoff, Nucl. Phys. B 231, 189 (1984)

    Article  ADS  Google Scholar 

  17. A. Donnachie, P.V. Landshoff, Phys. Lett. B 296, 227 (1992)

    Article  ADS  Google Scholar 

  18. A. Donnachie, P.V. Landshoff, Z. Phys. C 61, 139 (1994)

    Article  ADS  Google Scholar 

  19. E. Gotsman, E. Levin, U. Maor, Phys. Rev. D 60, 094011 (1999), arXiv:hep-ph/9902294

    Article  ADS  Google Scholar 

  20. E. Gotsman, E. Levin, U. Maor, E. Naftali, A. Prygarin, In: HERA and the LHC—A Workshop on the Implications of HERA for LHC Physics: Proceedings Part A, p. 221 (2005), arXiv:hep-ph-0601012

  21. E. Gotsman, A. Kormilitzin, E. Levin, U. Maor, Eur. Phys. J. C 52, 295 (2007), arXiv:hep-ph/0702053

    Article  ADS  Google Scholar 

  22. G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  23. M.L. Good, W.D. Walker, Phys. Rev. 120, 1857 (1960)

    Article  ADS  Google Scholar 

  24. F.E. Low, Phys. Rev. D 12, 163 (1975)

    Article  ADS  Google Scholar 

  25. S. Nussinov, Phys. Rev. Lett. 34, 1286 (1975)

    Article  ADS  Google Scholar 

  26. E.A. Kuraev, L.N. Lipatov, F.S. Fadin, Sov. Phys. JETP 45, 199 (1977)

    ADS  MathSciNet  Google Scholar 

  27. Y.Y. Balitsky, L.N. Lipatov, Sov. J. Nucl. Phys. 28, 22 (1978)

    Google Scholar 

  28. A.H. Mueller, Nucl. Phys. B 415, 373 (1994)

    Article  ADS  Google Scholar 

  29. A.H. Mueller, Nucl. Phys. B 437, 107 (1995)

    Article  ADS  Google Scholar 

  30. L.V. Gribov, E.M. Levin, M.G. Ryskin, Phys. Rep. 100, 1 (1983)

    Article  ADS  Google Scholar 

  31. A.H. Mueller, J. Qiu, Nucl. Phys. B 268, 427 (1986)

    Article  ADS  Google Scholar 

  32. L. McLerran, R. Venugopalan, Phys. Rev. D 49, 2233, 3352 (1994)

    Article  ADS  Google Scholar 

  33. L. McLerran, R. Venugopalan, Phys. Rev. D 50, 2225 (1994)

    Article  ADS  Google Scholar 

  34. L. McLerran, R. Venugopalan, Phys. Rev. D 53, 458 (1996)

    Article  ADS  Google Scholar 

  35. L. McLerran, R. Venugopalan, Phys. Rev. D 59, 09400 (1999)

    Article  Google Scholar 

  36. L.N. Lipatov, Phys. Rep. 286, 131 (1997)

    Article  ADS  Google Scholar 

  37. L.N. Lipatov, Sov. Phys. JETP 63, 904 (1986); and references therein

    Google Scholar 

  38. J. Bartels, M. Braun, G.P. Vacca, Eur. Phys. J. C 40, 419 (2005), arXiv:hep-ph/0412218

    Article  ADS  Google Scholar 

  39. J. Bartels, C. Ewerz, J. High Energy Phys. 9909, 026 (1999), arXiv:hep-ph/9908454

    Article  ADS  Google Scholar 

  40. J. Bartels, M. Wusthoff, Z. Phys. C 6, 157 (1995)

    Article  ADS  Google Scholar 

  41. A.H. Mueller, B. Patel, Nucl. Phys. B 425, 471 (1994), arXiv:hep-ph/9403256

    Article  ADS  Google Scholar 

  42. J. Bartels, Z. Phys. C 60, 471 (1993)

    Article  ADS  Google Scholar 

  43. M.A. Braun, Phys. Lett. B 632, 297 (2006), arXiv:hep-ph/0512057

    Article  ADS  MathSciNet  Google Scholar 

  44. M.A. Braun, Eur. Phys. J. C 16, 337 (2000), arXiv:hep-ph/0001268

    Article  ADS  Google Scholar 

  45. M.A. Braun, Phys. Lett. B 483, 115 (2000), arXiv:hep-ph/0003004

    Article  ADS  Google Scholar 

  46. M.A. Braun, Eur. Phys. J. C 33, 113 (2004), arXiv:hep-ph/0309293

    Article  ADS  Google Scholar 

  47. M.A. Braun, Eur. Phys. J. C 6, 321 (1999), arXiv:hep-ph/9706373

    ADS  Google Scholar 

  48. M.A. Braun, G.P. Vacca, Eur. Phys. J. C 6, 147 (1999), arXiv:hep-ph/9711486

    ADS  Google Scholar 

  49. A.H. Mueller, Nucl. Phys. B 415, 373 (1994)

    Article  ADS  Google Scholar 

  50. A.H. Mueller, Nucl. Phys. B 437, 107 (1995)

    Article  ADS  Google Scholar 

  51. E. Laenen, E. Levin, Nucl. Phys. B 451, 207 (1995)

    Article  ADS  Google Scholar 

  52. P. Grassberger, K. Sundermeyer, Phys. Lett. B 77, 220 (1978)

    Article  ADS  Google Scholar 

  53. E. Levin, Phys. Rev. D 49, 4469 (1994)

    Article  ADS  Google Scholar 

  54. K.G. Boreskov, Probabilistic model of reggeon field theory, arXiv:hep-ph/0112325 and reference therein.

  55. E. Levin, M. Lublinsky, Nucl. Phys. A 730, 191 (2004), arXiv:hep-ph/0308279

    Article  MATH  ADS  Google Scholar 

  56. E. Levin, M. Lublinsky, Nucl. Phys. A 763, 172 (2005) 172, arXiv:hep-ph/0501173

    Article  ADS  Google Scholar 

  57. E. Levin, M. Lublinsky, Phys. Lett. B 607, 131 (2005), arXiv:hep-ph/0411121

    Article  ADS  Google Scholar 

  58. Y.V. Kovchegov, Phys. Rev. D 60, 034008 (1999) arXiv:hep-ph/9901281

    Article  ADS  Google Scholar 

  59. R.P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)

    Article  ADS  Google Scholar 

  60. R.P. Feynman, Photon-Hadron Interactions (Reading, Addison-Wesley, 1972), p. 282

    Google Scholar 

  61. M. Kozlov, E. Levin, A. Prygarin, Nucl. Phys. A 792, 122 (2007), arXiv:0704.2124 [hep-ph]

    Article  ADS  Google Scholar 

  62. S. Bondarenko, L. Motyka, A.H. Mueller, A.I. Shoshi, B.W. Xiao, Eur. Phys. J. C 50, 593 (2007), arXiv:hep-ph/0609213

    Article  ADS  Google Scholar 

  63. M. Kozlov, E. Levin, Nucl. Phys. A 779, 142 (2006), arXiv:hep-ph/0604039

    Article  ADS  Google Scholar 

  64. D. Amati, M. Le Bellac, G. Marchesini, M. Ciafaloni, Nucl. Phys. B 112, 107 (1976)

    Article  ADS  Google Scholar 

  65. D. Amati, G. Marchesini, M. Ciafaloni, G. Parisi, Nucl. Phys. B 114, 483 (1976)

    Article  ADS  Google Scholar 

  66. A.H. Mueller, B. Patel, Nucl. Phys. B 425, 471 (1994)

    Article  ADS  Google Scholar 

  67. A.H. Mueller, G.P. Salam, Nucl. Phys. B 475, 293 (1996), arXiv:hep-ph/9605302

    Article  ADS  Google Scholar 

  68. G.P. Salam, Nucl. Phys. B 461, 512 (1996)

    Article  ADS  Google Scholar 

  69. E. Iancu, A.H. Mueller, Nucl. Phys. A 730, 460 (2004), arXiv:hep-ph/0308315

    Article  ADS  Google Scholar 

  70. E. Iancu, A.H. Mueller, Nucl. Phys. A 730, 494 (2004), arXiv:hep-ph/0309276

    Article  MATH  ADS  Google Scholar 

  71. E. Levin, A. Prygarin, Eur. Phys. J. C 53, 385 (2008), arXiv:hep-ph/0701178

    Article  ADS  Google Scholar 

  72. E. Levin, J. Miller, A. Prygarin, Nucl. Phys, A (2008, in press), arXiv:0706.2944 [hep-ph]

  73. M. Kozlov, E. Levin, Nucl. Phys. A 739, 291 (2004), arXiv:hep-ph/0401118

    Article  ADS  Google Scholar 

  74. Y.V. Kovchegov, Phys. Rev. D 72, 094009 (2005), arXiv:hep-ph/0508276

    Article  ADS  Google Scholar 

  75. M. Kozlov, E. Levin, V. Khachatryan, J. Miller, Nucl. Phys. A 791, 382 (2007), arXiv:hep-ph/0610084

    Article  ADS  Google Scholar 

  76. I. Gradstein, I. Ryzhik, Tables of Series, Products, and Integrals (MIR, Moscow, 1981)

    Google Scholar 

  77. V.A. Abramovsky, V.N. Gribov, O.V. Kancheli, Yad. Fiz. 18, 595 (1973)

    Google Scholar 

  78. V.A. Abramovsky, V.N. Gribov, O.V. Kancheli, Sov. J. Nucl. Phys. 18, 308 (1974)

    Google Scholar 

  79. Y.V. Kovchegov, E. Levin, Nucl. Phys. B 577, 221 (2000), arXiv:hep-ph/9911523

    Article  ADS  Google Scholar 

  80. K.G. Boreskov, A.B. Kaidalov, V.A. Khoze, A.D. Martin, M.G. Ryskin, Eur. Phys. J. C 44, 523 (2005), arXiv:hep-ph/0506211

    Article  ADS  Google Scholar 

  81. ZEUS Collaboration: Nucl. Phys. B 695, 3 (2004)

    Article  ADS  Google Scholar 

  82. ZEUS Collaboration: Eur. Phys. J. C 24, 345 (2002)

    Article  Google Scholar 

  83. K. Goulianos, J. Montanha, Phys. Rev. D 59, 114017 (1999)

    Article  ADS  Google Scholar 

  84. CDF Collaboration. Phys. Rev. D 50, 5535 (1994)

    Article  Google Scholar 

  85. H. Kowalski, D. Teaney, Phys. Rev. D 68, 114005 (2003)

    Article  ADS  Google Scholar 

  86. J.S. Miller, Survival Probability for Higgs Diffractive Production in High Density QCD, arXiv:hep-ph/0610427

  87. V.A. Khoze, A.D. Martin, M.G. Ryskin, New Physics with Tagged Forward Protons at the LHC, arXiv:0705.2314 [hep-ph] and references therein

  88. J. Bartels, S. Bondarenko, K. Kutak, L. Motyka, Phys. Rev. D 73, 093004 (2006), arXiv:hep-ph/0601128

    Article  ADS  Google Scholar 

  89. A.B. Kaidalov, L.A. Ponomarev, K.A. Ter-Martirosian, Yad. Fiz. 44, 722 (1986)

    Google Scholar 

  90. A.B. Kaidalov, L.A. Ponomarev, K.A. Ter-Martirosian, Sov. J. Nucl. Phys. 44, 468 (1986). Reprinted in [2], pp. 184–187

    Google Scholar 

  91. R.C. Brower, M.J. Strassler, C.I. Tan, On The pomeron at Large ’t Hooft Coupling, arXiv:0710.4378 [hep-th]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gotsman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotsman, E., Levin, E., Maor, U. et al. A QCD motivated model for soft interactions at high energies. Eur. Phys. J. C 57, 689–709 (2008). https://doi.org/10.1140/epjc/s10052-008-0704-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0704-5

PACS

Navigation