Skip to main content
Log in

New lump-like structures in scalar-field models

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

In this work we investigate lump-like solutions in models described by a single real scalar field. We start considering non-topological solutions with the usual lump-like form, and then we study other models, where the bell-shape profile may have a varying amplitude and width or develop a flat plateau at its top or even induce a lump on top of another lump. We suggest possible applications in which these exotic solutions might be used in several distinct branches of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam, 1982)

    MATH  Google Scholar 

  2. L. Wilets, Non topological solitons (World Scientific, Singapore, 1989)

    Google Scholar 

  3. A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge UP, Cambridge, UK, 1994)

    MATH  Google Scholar 

  4. N. Manton, P. Sutcliffe, Topological Solitons (Cambridge UP, Cambridge, UK, 2004)

    MATH  Google Scholar 

  5. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

    MATH  Google Scholar 

  6. A.H. Eschenfelder, Magnetic Bubble Technology (Springer, Berlin, 1981)

    Google Scholar 

  7. A.S. Davidov, Solitons in Molecular Systems (Kluwer, Dordrecht, 1981)

    Google Scholar 

  8. J.D. Murray, Mathematical Biology (Springer, Berlin, 1989)

    MATH  Google Scholar 

  9. D. Walgraef, Spatio-Temporal Pattern Formation (Springer, New York, 1997)

    Google Scholar 

  10. G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 1995)

    Google Scholar 

  11. Y.S. Kivshar, B. Luther-Davies, Phys. Rep. 298, 81 (1998)

    Article  ADS  Google Scholar 

  12. M. Bucher, D.N. Spergel, Phys. Rev. D 60, 043505 (1999)

    Article  ADS  Google Scholar 

  13. P.P. Avelino, C.J.A. Martins, J. Menezes, R. Menezes, J.C.R.E. Oliveira, Phys. Rev. D 73, 123519 (2006)

    Article  ADS  Google Scholar 

  14. N. Arkani-Hamed, S. Dimopoulos, G. Dvali, Phys. Lett. B 429, 263 (1998)

    Article  ADS  Google Scholar 

  15. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. W.D. Goldberger, M.B. Wise, Phys. Rev. Lett. 83, 4922 (1999)

    Article  ADS  Google Scholar 

  17. O. DeWolfe, D.Z. Freedman, S.S. Gubser, A. Karch, Phys. Rev. D 62, 046008 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Pnevmatikos, Phys. Rev. Lett. 60, 1534 (1988)

    Article  ADS  Google Scholar 

  19. J.-Z. Xu, J.-N. Huang, Phys. Lett. A 197, 127 (1995)

    Article  ADS  Google Scholar 

  20. J.-Z. Xu, B. Zhou, Phys. Lett. A 210, 307 (1996)

    Article  ADS  Google Scholar 

  21. D. Bazeia, J.R. Nascimento, D. Toledo, Phys. Lett. A 228, 357 (1997)

    Article  ADS  Google Scholar 

  22. D. Bazeia, V.B.P. Leite, B.H.B. Lima, F. Moraes, Chem. Phys. Lett. 340, 205 (2001)

    Article  ADS  Google Scholar 

  23. H.A. Haus, W.S. Wong, Rev. Mod. Phys. 68, 423 (1996)

    Article  ADS  Google Scholar 

  24. J.A. Frieman, G.B. Gelmini, M. Gleiser, E.W. Kolb, Phys. Rev. Lett. 60, 2101 (1988)

    Article  ADS  Google Scholar 

  25. A.L. MacPherson, B.A. Campbell, Phys. Lett. B 347, 205 (1995)

    Article  ADS  Google Scholar 

  26. J.R. Morris, D. Bazeia, Phys. Rev. D 54, 5217 (1996)

    Article  ADS  Google Scholar 

  27. D. Coulson, Z. Lalak, B. Ovrut, Phys. Rev. D 53, 4237 (1996)

    Article  ADS  Google Scholar 

  28. M.Y. Khlopov, Cosmoparticle Physics (World Scientific, Singapore, 1999)

    MATH  Google Scholar 

  29. S. Coleman, Nucl. Phys. B 262, 263 (1985)

    Article  ADS  Google Scholar 

  30. G. Dvali, A. Kusenko, M. Shaposhnikov, Phys. Lett. B 417, 99 (1998)

    Article  ADS  Google Scholar 

  31. A. Kusenko, M. Shaposhnikov, Phys. Lett. B 418, 46 (1998)

    Article  ADS  Google Scholar 

  32. T. Matsuda, Phys. Rev. D 68, 127302 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  33. A. Sen, Int. J. Mod. Phys. A 20, 5513 (2005)

    Article  MATH  ADS  Google Scholar 

  34. B. Zwiebach, JHEP 0009, 028 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  35. J.A. Minahan, B. Zwiebach, JHEP 0009, 029 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  36. B. Fuchs, E.W. Mielke, MNRAS 350, 707 (2004)

    Article  ADS  Google Scholar 

  37. F.E. Schunck, B. Fuchs, E.W. Mielke, MNRAS 369, 485 (2006)

    Article  ADS  Google Scholar 

  38. D. Stojkovic, Phys. Rev. D 67, 045012 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Giovannini, Phys. Rev. D 75, 064023 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  40. J. Wess, J. Bagger, Supersymmetry and Supergravity (Princeton UP, Princeton, 1992)

    Google Scholar 

  41. D. Bazeia, Phys. Rev. D 60, 067705 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  42. D. Bazeia, L. Losano, J.M.C. Malbouisson, Phys. Rev. 66, 101701(R) (2002)

    ADS  Google Scholar 

  43. D. Bazeia, J. Menezes, R. Menezes, Phys. Rev. Lett. 91, 241601 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Bazeia.

Additional information

PACS

11.27.+d; 11.25.-w; 98.35.Gi; 98.80.Cq

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avelar, A., Bazeia, D., Losano, L. et al. New lump-like structures in scalar-field models. Eur. Phys. J. C 55, 133–143 (2008). https://doi.org/10.1140/epjc/s10052-008-0578-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-008-0578-6

Keywords

Navigation