Skip to main content
Log in

One-loop beta functions for the orientable non-commutative Gross–Neveu model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We compute at the one-loop order the β-functions for a renormalisable non-commutative analog of the Gross–Neveu model defined on the Moyal plane. The calculation is performed within the so called x-space formalism. We find that this non-commutative field theory exhibits asymptotic freedom for any number of colors. The β-function for the non-commutative counterpart of the Thirring model is found to be non vanishing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.P. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  2. R. Wulkenhaar, J. Geom. Phys. 56, 108 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Gayral, J.-H. Jureit, T. Krawjewski, R. Wulkenhaar, hep-th/0612048

  4. A. Connes, Noncommutative Geometry (Academic Press Inc., San Diego, 1994)

    MATH  Google Scholar 

  5. A. Connes, M. Marcolli, A walk in the noncommutative garden, (2006) available at http://www.alainconnes.org/downloads.html

  6. N. Seiberg, E. Witten, JHEP 9909, 032 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. V. Schomerus, JHEP 9906, 030 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Connes, M. Douglas, A.S. Schwarz, JHEP 9802, 003 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  9. see also E. Witten, Nucl. Phys. B 268, 253 (1986)

    Article  Google Scholar 

  10. J.M. Gracia-Bondía, J.C. Várilly, J. Math. Phys. 29, 869 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. J.C. Varilly, J.M. Gracia-Bondia, J. Math. Phys. 29, 880 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. S. Minwalla, M. Van Raamsdonk, N. Seiberg, JHEP 0002, 020 (2000)

    Article  ADS  Google Scholar 

  13. I. Chepelev, R. Roiban, JHEP 0103, 001 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  14. V. Gayral, Ann. H. Poincaré 6, 991 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. K.G. Wilson, J.B. Kogut, Phys. Rep. 12, 75 (1974)

    Article  ADS  Google Scholar 

  16. J. Polchinski, Nucl. Phys. B 231, 269 (1984)

    Article  ADS  Google Scholar 

  17. H. Grosse, R. Wulkenhaar, Commun. Math. Phys. 256, 305 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. See also H. Grosse, R. Wulkenhaar, Commun. Math. Phys. 254, 91 (2005)

    Article  ADS  Google Scholar 

  19. R. Gurau, J. Magnen, V. Rivasseau, F. Vignes-Tourneret, Commun. Math. Phys. 267, 515 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. See B. Simon, Functional Integration and Quantum Physics (Academic Press, New York, San Francisco, London 1994)

  21. R. Gurau, V. Rivasseau, F. Vignes-Tourneret, Ann. H. Poincaré 7, 1601 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. E. Langmann, R.J. Szabo, K. Zarembo, JHEP 01, 017 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Langmann, R.J. Szabo, K. Zarembo, Phys. Lett. B 569, 95 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. H. Grosse, R. Wulkenhaar, JHEP 12, 019 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  25. H. Grosse, H. Steinacker, hep-th/0512203

  26. H. Grosse, H. Steinacker, hep-th/0603052

  27. H. Grosse, H. Steinacker, hep-th/0607235

  28. D.J. Gross, A. Neveu, Phys. Rev. D 10, 3235 (1974)

    Article  ADS  Google Scholar 

  29. See also P.K. Mitter, P.H. Weisz, Phys. Rev. D 8, 4410 (1973)

    Article  ADS  Google Scholar 

  30. C. Kopper, J. Magnen, V. Rivasseau, Commun. Math. Phys. 169, 121 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. F. Vignes-Tourneret, Ann. H. Poincaré 8, 427 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. F. Vignes-Tourneret, Renormalisation des théories de champs non commutatives (Ph-D Thesis, Université Paris 11, September 2006)

  33. E.T. Akhmedov, P. De Boer, G. Semenoff, JHEP 106, 009 (2001)

    Article  ADS  Google Scholar 

  34. see also E.T. Akhmedov, P. De Boer, G. Semenoff, Phys. Rev. D 64, 065005 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  35. E. Langmann, R.J. Szabo, Phys. Lett. B 533, 168 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. H. Grosse, R. Wulkenhaar, Eur. Phys. J. C 35, 277 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. For extension to the two and three loops orders, see M. Dissertori, V. Rivasseau, Eur. Phys. J. C 50, 661 (2007)

    Article  Google Scholar 

  38. M. Dissertori, R. Gurau, J. Magnen, V. Rivasseau, hep-th/0612251

  39. A. Lakhoua, J. Magnen, F. Vignes-Tourneret, J.C. Wallet, in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lakhoua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakhoua, A., Vignes-Tourneret, F. & Wallet, JC. One-loop beta functions for the orientable non-commutative Gross–Neveu model . Eur. Phys. J. C 52, 735–742 (2007). https://doi.org/10.1140/epjc/s10052-007-0424-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0424-2

Keywords

Navigation