Skip to main content
Log in

The Landau pole and Z decays in the 331 dilepton model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We calculate the decay widths and branching ratios of the extra neutral boson Z’ predicted by the 331 dilepton model in the framework of two different particle contents. These calculations are performed taking into account oblique radiative corrections and flavor changing neutral currents (FCNC) under the ansatz of Matsuda as a texture for the quark mass matrices. Contributions of the order of 10-1–10-2 are obtained in the branching ratios, and the partial widths about one order of magnitude bigger in relation with other 331 models are also obtained. A Landau-like pole arises at 3.5 TeV considering the full particle content of the minimal dilepton model (MDM), where the exotic sector is considered as a degenerate spectrum at the 3 TeV scale. The Landau pole problem can be avoided at the TeV scales if a new leptonic content running below the threshold at 3 TeV is implemented as suggested by other authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Bell, R. Jackiw, Nuovo Cim. A 60, 47 (1969)

    Article  ADS  Google Scholar 

  2. S.L. Adler, Phys. Rev. 177, 2426 (1969)

    Article  ADS  Google Scholar 

  3. D.J. Gross, R. Jackiw, Phys. Rev. D 6, 477 (1972)

    Article  ADS  Google Scholar 

  4. H. Georgi, S.L. Glashow, Phys. Rev. D 6, 429 (1972)

    Article  ADS  Google Scholar 

  5. S. Okubo, Phys. Rev. D 16, 3528 (1977)

    Article  ADS  Google Scholar 

  6. J. Banks, H. Georgi, Phys. Rev. 14, 1159 (1976)

    ADS  Google Scholar 

  7. S. Godfrey, in: Proc. of the APS/DPF/DPB Summer Study on the Future of Particles Physics, Snowmass, 2001, ed. by N. Graf [hep-ph/0201093, hep-ph/0201092]

  8. M. Carena, A. Daleo, B.A. Dobrescu, T.M.P. Tait, Phys. Rev. D 70, 093009 (2004)

    Article  ADS  Google Scholar 

  9. LHC/LC Study Group, G. Weiglein et al., hep-ph/0410364

  10. P.H. Frampton, P.Q. Hung, M. Sher, hep-ph/9903387 v2

  11. C.A. de S. Pires, O.P. Ravinez, Phys. Rev. D 58, 35008 (1998)

    Article  ADS  Google Scholar 

  12. C.A. de S. Pires, Phys. Rev. D 60, 075013 (1999)

    Article  ADS  Google Scholar 

  13. L.A. Sánchez, W.A. Ponce, R. Martínez, Phys. Rev. D 64, 075013 (2001)

    Article  ADS  Google Scholar 

  14. R. Foot, H.N. Long, T.A. Tran, Phys. Rev. D 50, R34 (1994)

    Article  ADS  Google Scholar 

  15. H.N. Long, Phys. Rev. D 53, 437 (1996)

    Article  ADS  Google Scholar 

  16. H.N. Long, Phys. Rev. D 54, 4691 (1996)

    Article  ADS  Google Scholar 

  17. H.N. Long, Mod. Phys. Lett. A 13, 1865 (1998)

    Article  ADS  Google Scholar 

  18. F. Pisano, V. Pleitez, Phys. Rev. D 46, 410 (1992)

    Article  ADS  Google Scholar 

  19. P.H. Frampton, Phys. Rev. Lett. 69, 2889 (1992)

    Article  ADS  Google Scholar 

  20. P.H. Frampton, P. Krastev, J.T. Liu, Mod. Phys. Lett. A 9, 761 (1994)

    Article  ADS  Google Scholar 

  21. P.H. Frampton et al., Mod. Phys. Lett. A 9, 1975 (1994)

    Article  ADS  Google Scholar 

  22. T.A. Nguyen, A.K. Nguyen, N.L. Hoang, Int. J. Mod. Phys. A 16, 541 (2001)

    Article  Google Scholar 

  23. R.A. Diaz, R. Martinez, F. Ochoa, Phys. Rev. D 69, 095009 (2004)

    Article  ADS  Google Scholar 

  24. R.A. Diaz, R. Martinez, F. Ochoa, Phys. Rev. D 72, 035018 (2005)

    Article  ADS  Google Scholar 

  25. F. Ochoa, R. Martinez, Phys. Rev. D 72, 035010 (2005)

    Article  ADS  Google Scholar 

  26. A.G. Dias, R. Martínez, V. Pleitez, Eur. Phys. J. C 39, 101 (2005)

    Article  ADS  Google Scholar 

  27. A.G. Dias, Phys. Rev. D 71, 015009 (2005)

    Article  ADS  Google Scholar 

  28. G.A. González-Sprinberg, R. Martínez, O. Sampayo, Phys. Rev. D 71, 115003 (2005)

    Article  ADS  Google Scholar 

  29. K.T. Mahanthappa, P.K. Mohapatra, Phys. Rev. D 42, 1732 (1990)

    Article  ADS  Google Scholar 

  30. K.T. Mahanthappa, P.K. Mohapatra, Phys. Rev. D 43, 3093 (1991)

    Article  ADS  Google Scholar 

  31. A. Carcamo, R. Martinez, F. Ochoa, Phys. Rev. D 73, 035007 (2006)

    Article  ADS  Google Scholar 

  32. J. Gunion et al., in: The Higgs Hunter’s Guide (Addison-Wesley, New York, 1990)

    Google Scholar 

  33. S. Glashow, S. Weinberg, Phys. Rev. D 15, 1958 (1977)

    Article  ADS  Google Scholar 

  34. D. Atwood, L. Reina, A. Soni, Phys. Rev. Lett. 75, 3800 (1993)

    Article  ADS  Google Scholar 

  35. D. Atwood, L. Reina, A. Soni, Phys. Rev. D 53, 1199 (1996)

    Article  ADS  Google Scholar 

  36. D. Atwood, L. Reina, A. Soni, Phys. Rev. D 54, 3296 (1996)

    Article  ADS  Google Scholar 

  37. D. Atwood, L. Reina, A. Soni, Phys. Rev. D 55, 3156 (1997)

    Article  ADS  Google Scholar 

  38. M. Sher, Yao Yuan, Phys. Rev. D 44, 1461 (1991)

    Article  ADS  Google Scholar 

  39. T.P. Cheng, M. Sher, Phys. Rev. D 35, 3490 (1987)

    Article  ADS  Google Scholar 

  40. K. Matsuda, H. Nishiura, Phys. Rev. D 69, 053005 (2004)

    Article  ADS  Google Scholar 

  41. D.G. Dumm, F. Pisano, V. Pleitez, Mod. Phys. Lett. A 9, 1609 (1994)

    Article  ADS  Google Scholar 

  42. C. Promberger, S. Schatt, F. Schwab, hep-ph/0702169 (2007)

  43. Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 120 (2004)

    Google Scholar 

  44. J. Bernabeu, A. Pich, A. Santamaria, Nucl. Phys. B 363, 326 (1991)

    Article  ADS  Google Scholar 

  45. D. Bardin et al., Electroweak Working Group Report, hep-ph/9709229 (1997) pp. 28–32

  46. H. Fusaoka, Y. Koide, Phys. Rev. D 57, 3986 (1998)

    Article  ADS  Google Scholar 

  47. M.A. Perez, G. Tavares-Velasco, J.J. Toscano, Phys. Rev. D 69, 115004 (2004)

    Article  ADS  Google Scholar 

  48. M.A. Perez, M.A. Soriano, Phys. Rev. D 46, 125 (1992)

    Article  Google Scholar 

  49. A. Ghosal, Y. Koide, H. Fusaoka, Phys. Rev. D 64, 053012 (2001)

    Article  ADS  Google Scholar 

  50. J.I. Illana, T. Riemann, Phys. Rev. D 63, 053004 (2001)

    Article  ADS  Google Scholar 

  51. D. Delepine, F. Vissani, Phys. Lett. B 522, 95 (2001)

    Article  ADS  Google Scholar 

  52. T. Rador, Phys. Rev. D 59, 095012 (1999)

    Article  ADS  Google Scholar 

  53. P. Langacker, M. Plumacher, Phys. Rev. D 62, 013006 (2000)

    Article  ADS  Google Scholar 

  54. V. Barger, C.-W. Chiang, P. Langacker, H.-S. Lee, Phys. Lett. B 580, 186 (2004)

    Article  ADS  Google Scholar 

  55. S. Fajfer, P. Singer, Phys. Rev. D 65, 017301 (2002)

    Article  ADS  Google Scholar 

  56. D.L. Anderson, M. Sher, Phys. Rev. D 72, 095014 (2005)

    Article  ADS  Google Scholar 

  57. J.A. Rodriguez, M. Sher, Phys. Rev. D 70, 117702 (2004)

    Article  ADS  Google Scholar 

  58. W. Bernreuther, W. Wetzel, Nucl. Phys. B 197, 228 (1982)

    Article  ADS  Google Scholar 

  59. W. Bernreuther, Ann. Phys. 151, 127 (1983)

    Article  ADS  Google Scholar 

  60. K.G. Chetyrkin, B.A. Kniehl, M. Steinhauser, Phys. Rev. Lett. 79, 2184 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ochoa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez, R., Ochoa, F. The Landau pole and Z decays in the 331 dilepton model. Eur. Phys. J. C 51, 701–711 (2007). https://doi.org/10.1140/epjc/s10052-007-0307-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0307-6

Keywords

Navigation