Skip to main content
Log in

(Non)decoupling of the Higgs triplet effects

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We consider the electroweak theory with an additional Higgs triplet at one loop, using the hybrid renormalization scheme based on αEM, GF and MZ as input observables. We show that in this scheme loop corrections can in a natural way be split into a standard model part and corrections due to “new physics”. The latter, however, do not decouple in the limit of an infinite triplet mass parameter, if the triplet trilinear coupling to the SM Higgs doublets grows with the triplet mass. For electroweak observables computed at one loop this effect can be attributed to the radiative generation in this limit of a nonvanishing vacuum expectation value of the triplet. We also point out that whenever tree level expressions for the electroweak observables depend on vacuum expectation values of scalar fields other than the standard model Higgs doublet, a tadpole contribution to the “oblique” parameter T should in principle be included. The origin of nondecoupling is discussed also on the basis of symmetry principles in a simple scalar field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Csaki, J. Hubisz, G.D. Kribs, P. Meade, J. Terning, Phys. Rev. D 67, 115002 (2003) [hep-ph/0211124]

    Article  ADS  Google Scholar 

  2. T. Han, H.E. Logan, B. McElrath, L.T. Wang, Phys. Rev. D 67, 095004 (2003) [hep-ph/0301040]

    Article  ADS  Google Scholar 

  3. C. Csaki, J. Hubisz, G.D. Kribs, P. Meade, J. Terning, Phys. Rev. D 68, 035009 (2003) [hep-ph/0303236]

    Article  ADS  Google Scholar 

  4. M. Perelstein, M.E. Peskin, A. Pierce, Phys. Rev. D 69, 075002 (2004) [hep-ph/0310039]

    Article  ADS  Google Scholar 

  5. G. Marandella, C. Schappacher, A. Strumia, Phys. Rev. D 72, 035014 (2005) [hep-ph/0502096]

    Article  ADS  Google Scholar 

  6. J.L. Hewett, F.J. Petriello, T.G. Rizzo, JHEP 0310, 062 (2003) [hep-ph/0211218]

    Article  ADS  Google Scholar 

  7. T. Gregoire, D.R. Smith, J.G. Wacker, Phys. Rev. D 69, 115008 (2004) [hep-ph/0305275]

    Article  ADS  Google Scholar 

  8. J. Hubisz, P. Meade, A. Noble, M. Perelstein, JHEP 0601, 135 (2006) [hep-ph/0506042]

    Article  ADS  Google Scholar 

  9. J.R. Forshaw, D.A. Ross, B.E. White, JHEP 0110, 007 (2001) [hep-ph/0107232]

    Article  ADS  Google Scholar 

  10. F. Jegerlehner, Prog. Part. Nucl. Phys. 27, 1 (1991)

    Article  ADS  Google Scholar 

  11. M. Czakon, J. Gluza, F. Jegerlehner, M. Zrałek, Eur. Phys. J. C 13, 275 (2000)

    Article  ADS  Google Scholar 

  12. M.C. Chen, S. Dawson, T. Krupovnickas, hep-ph/0504286

  13. M.C. Chen, S. Dawson, T. Krupovnickas, hep-ph/0604102

  14. M.C. Chen, S. Dawson, Phys. Rev. D 70, 015003 (2004) [hep-ph/0311032]

    Article  ADS  Google Scholar 

  15. T. Appelquist, J. Carazzone, Phys. Rev. D 11, 2856 (1975)

    Article  ADS  Google Scholar 

  16. N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, JHEP 0207, 034 (2002) [hep-ph/0206021]

    Article  ADS  MathSciNet  Google Scholar 

  17. P.H. Chankowski, S. Pokorski, J. Wagner, Eur. Phys. J. C 47, 187 (2006)

    Article  ADS  Google Scholar 

  18. T. Blank, W. Hollik, Nucl. Phys. B 514, 113 (1998) [hep-ph/9703392]

    Article  ADS  Google Scholar 

  19. R. Barbieri, Lecture given at the CCAST Symposium on Particle Physics at the Fermi Scale, Beijing, China, May–June 1993, published in CCAST Symposium 1993, p. 163

  20. S. Pokorski, Gauge field theories, 2nd edn. (Cambridge University Press, Cambridge, 2000)

  21. P.H. Chankowski, P. Wasowicz, Eur. Phys. J. C 23, 249 (2002)

    Article  ADS  Google Scholar 

  22. J.R. Forshaw, A. Sabio Vera, B.E. White, JHEP 0306, 059 (2003) [hep-ph/0302256]

    Article  ADS  Google Scholar 

  23. B.W. Lynn, E. Nardi, Nucl. Phys. B 381, 467 (1992)

    Article  ADS  Google Scholar 

  24. M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65, 964 (1990)

    Article  ADS  Google Scholar 

  25. M.E. Peskin, T. Takeuchi, Phys. Rev. D 46, 381 (1992)

    Article  ADS  Google Scholar 

  26. G. Altarelli, R. Barbieri, Phys. Lett. B 253, 161 (1991)

    Article  ADS  Google Scholar 

  27. G. Altarelli, R. Barbieri, S. Jadach, Nucl. Phys. B 369, 3 (1992)

    Article  ADS  Google Scholar 

  28. G. Altarelli, R. Barbieri, S. Jadach, Nucl. Phys. B 376, 444 (1992) [Erratum]

    Article  Google Scholar 

  29. K. Hasegawa, Phys. Rev. D 70, 054002 (2004) [hep-ph/0403272]

    Article  ADS  Google Scholar 

  30. R. Barbieri, A. Pomarol, R. Rattazzi, A. Strumia, Nucl. Phys. B 703, 127 (2004) [hep-ph/0405040]

    Article  MATH  ADS  Google Scholar 

  31. G. Marandella, C. Schappacher, A. Strumia, Phys. Rev. D 72, 035014 (2005) [hep-ph/0502096]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.H. Chankowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chankowski, P., Pokorski, S. & Wagner, J. (Non)decoupling of the Higgs triplet effects. Eur. Phys. J. C 50, 919–933 (2007). https://doi.org/10.1140/epjc/s10052-007-0259-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-007-0259-x

Keywords

Navigation