Skip to main content
Log in

Supersymmetric benchmarks with non-universal scalar masses or gravitino dark matter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

We motivate, propose and examine a new set of benchmark supersymmetric scenarios, some of which have non-universal Higgs scalar masses (NUHM) and others have gravitino dark matter (GDM). The scalar masses in these proposed models are either considerably larger or smaller than the narrow range allowed for the same gaugino mass m1/2 in the constrained MSSM (CMSSM) with universal scalar masses m0 and neutralino dark matter. Unlike the CMSSM, the proposed NUHM and GDM models with larger m0 may have large branching ratios for Higgs and/or Z production in the cascade decays of heavier sparticles, whose detection we discuss. The novel phenomenology of the GDM models depends on the nature of the next-to-lightest supersymmetric particle (NLSP), which has a lifetime exceeding 104 s in the proposed benchmark scenarios. In one GDM scenario the NLSP is the lightest neutralino χ, and the supersymmetric collider signatures are similar to those in previous CMSSM benchmarks, but with a distinctive spectrum that would be challenging for the LHC and ILC. In the other GDM scenarios based on minimal supergravity (mSUGRA), the NLSP is the lighter stau slepton \(\tilde\tau_1\), with a lifetime between ∼104 and 3×106 s. Every supersymmetric cascade would end in a \(\tilde\tau_1\), which would have a distinctive time-of-flight signature. Slow-moving \(\tilde\tau_1\)’s might be trapped in a collider detector or outside it, and the preferred detection strategy would depend on the \(\tilde\tau_1\) lifetime. We discuss the extent to which these mSUGRA GDM scenarios could be distinguished from gauge-mediated models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Maiani, Proceedings of the 1979 Gif-sur-Yvette Summer School On Particle Physics, 1

  2. G. ’t Hooft, in Recent Developments in Gauge Theories, Proceedings of the Nato Advanced Study Institute, Cargese, 1979, ed. by G. ’t Hooft et al. (Plenum Press, NY, 1980)

  3. E. Witten, Phys. Lett. B 105, 267 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  4. LEP Electroweak Working Group, http://lepewwg.web.cern.ch/LEPEWWG/Welcome.html

  5. J. Ellis, S. Kelley, D.V. Nanopoulos, Phys. Lett. B 260, 131 (1991)

    Article  ADS  Google Scholar 

  6. U. Amaldi, W. de Boer, H. Furstenau, Phys. Lett. B 260, 447 (1991)

    Article  ADS  Google Scholar 

  7. C. Giunti, C.W. Kim, U.W. Lee, Mod. Phys. Lett. A 6, 1745 (1991)

    Article  ADS  Google Scholar 

  8. J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive, M. Srednicki, Nucl. Phys. B 238, 453 (1984)

    Article  ADS  Google Scholar 

  9. see also H. Goldberg, Phys. Rev. Lett. 50, 1419 (1983)

    Article  Google Scholar 

  10. Muon g-2 Collaboration, G.W. Bennett et al., Phys. Rev. Lett. 92, 161802 (2004) [arXiv:hep-ex/0401008]

    Article  ADS  Google Scholar 

  11. M. Davier, S. Eidelman, A. Hocker, Z. Zhang, Eur. Phys. J. C 31, 503 (2003) [arXiv:hep-ph/0308213]

    Article  ADS  Google Scholar 

  12. K. Hagiwara, A.D. Martin, D. Nomura, T. Teubner, Phys. Rev. D 69, 093003 (2004) [arXiv:hep-ph/0312250]

    Article  ADS  Google Scholar 

  13. J.F. de Troconiz, F.J. Yndurain, Phys. Rev. D 71, 073008 (2005) [arXiv:hep-ph/0402285]

    Article  ADS  Google Scholar 

  14. K. Melnikov, A. Vainshtein, Phys. Rev. D 70, 113006 (2004) [arXiv:hep-ph/0312226]

    Article  ADS  Google Scholar 

  15. M. Passera, J. Phys. G 31, R75 (2005) [arXiv:hep-ph/0411168]

    Article  ADS  Google Scholar 

  16. I. Hinchliffe, F.E. Paige, M.D. Shapiro, J. Soderqvist, W. Yao, Phys. Rev. D 55, 5520 (1997)

    Article  ADS  Google Scholar 

  17. CMS Collaboration, S. Abdullin et al., hep-ph/9806366

  18. S. Abdullin, F. Charles, Nucl. Phys. B 547, 60 (1999)

    Article  ADS  Google Scholar 

  19. TESLA Technical Design Report, DESY-01-011, Part III, Physics at an e+e- Linear Collider (March 2001)

  20. M. Battaglia et al., Eur. Phys. J. C 22, 535 (2001) [arXiv:hep-ph/0106204]

    Article  ADS  Google Scholar 

  21. B.C. Allanach et al., Proc. of the APS/DPF/DPB Summer Study on the Future of Particle Physics (Snowmass 2001), ed. by N. Graf, Eur. Phys. J. C 25, 113 (2002) [eConf C 010630, P125 (2001)] [arXiv:hep-ph/0202233]

  22. G.L. Kane, J. Lykken, S. Mrenna, B.D. Nelson, L.T. Wang, T.T. Wang, Phys. Rev. D 67, 045008 (2003) [arXiv:hep-ph/0209061]

    Article  ADS  Google Scholar 

  23. M. Battaglia, A. De Roeck, J.R. Ellis, F. Gianotti, K.A. Olive, L. Pape, Eur. Phys. J. C 33, 273 (2004) [arXiv:hep-ph/0306219]

    Article  ADS  Google Scholar 

  24. J.R. Ellis, D.V. Nanopoulos, Phys. Lett. B 110, 44 (1982)

    Article  ADS  Google Scholar 

  25. R. Barbieri, R. Gatto, Phys. Lett. B 110, 211 (1982)

    Article  ADS  Google Scholar 

  26. V. Berezinsky, A. Bottino, J.R. Ellis, N. Fornengo, G. Mignola, S. Scopel, Astropart. Phys. 5, 1 (1996) [arXiv:hep-ph/9508249]

    Article  ADS  Google Scholar 

  27. M. Drees, M.M. Nojiri, D.P. Roy, Y. Yamada, Phys. Rev. D 56, 276 (1997) [arXiv:hep-ph/9701219]

    Article  ADS  Google Scholar 

  28. M. Drees, M.M. Nojiri, D.P. Roy, Y. Yamada, Phys. Rev. D 64, 039901 (1997) [Erratum]

    Article  ADS  Google Scholar 

  29. M. Drees, Y.G. Kim, M.M. Nojiri, D. Toya, K. Hasuko, T. Kobayashi, Phys. Rev. D 63, 035008 (2001) [arXiv:hep-ph/0007202]

    Article  ADS  Google Scholar 

  30. P. Nath, R. Arnowitt, Phys. Rev. D 56, 2820 (1997) [arXiv:hep-ph/9701301]

    Article  ADS  Google Scholar 

  31. A. Bottino, F. Donato, N. Fornengo, S. Scopel, Phys. Rev. D 63, 125003 (2001) [arXiv:hep-ph/0010203]

    Article  ADS  Google Scholar 

  32. S. Profumo, Phys. Rev. D 68, 015006 (2003) [arXiv:hep-ph/0304071]

    Article  ADS  Google Scholar 

  33. D.G. Cerdeno, C. Munoz, JHEP 0410, 015 (2004) [arXiv:hep-ph/0405057]

    Article  ADS  MathSciNet  Google Scholar 

  34. H. Baer, A. Mustafayev, S. Profumo, A. Belyaev, X. Tata, JHEP 0507, 065 (2005) [arXiv:hep-ph/0504001]

    Article  ADS  Google Scholar 

  35. J.R. Ellis, K. Olive, Y. Santoso, Phys. Lett. B 539, 107 (2002) [arXiv:hep-ph/0204192]

    Article  ADS  Google Scholar 

  36. J.R. Ellis, T. Falk, K.A. Olive, Y. Santoso, Nucl. Phys. B 652, 259 (2003) [arXiv:hep-ph/0210205]

    Article  ADS  Google Scholar 

  37. J.R. Ellis, J.E. Kim, D.V. Nanopoulos, Phys. Lett. B 145, 181 (1984)

    Article  ADS  Google Scholar 

  38. T. Moroi, H. Murayama, M. Yamaguchi, Phys. Lett. B 303, 289 (1993)

    Article  ADS  Google Scholar 

  39. J.R. Ellis, D.V. Nanopoulos, K.A. Olive, S.J. Rey, Astropart. Phys. 4, 371 (1996) [arXiv:hep-ph/9505438]

    Article  ADS  Google Scholar 

  40. M. Bolz, W. Buchmuller, M. Plumacher, Phys. Lett. B 443, 209 (1998) [arXiv:hep-ph/9809381]

    Article  ADS  Google Scholar 

  41. T. Gherghetta, G.F. Giudice, A. Riotto, Phys. Lett. B 446, 28 (1999) [arXiv:hep-ph/9808401]

    Article  ADS  Google Scholar 

  42. T. Asaka, K. Hamaguchi, K. Suzuki, Phys. Lett. B 490, 136 (2000) [arXiv:hep-ph/0005136]

    Article  ADS  Google Scholar 

  43. M. Fujii, T. Yanagida, Phys. Rev. D 66, 123515 (2002) [arXiv:hep-ph/0207339]

    Article  ADS  Google Scholar 

  44. J.R. Ellis, Phys. Lett. B 549, 273 (2002) [arXiv:hep-ph/0208191]

    Article  Google Scholar 

  45. M. Bolz, A. Brandenburg, W. Buchmuller, Nucl. Phys. B 606, 518 (2001) [arXiv:hep-ph/0012052]

    Article  ADS  Google Scholar 

  46. W. Buchmuller, K. Hamaguchi, M. Ratz, Phys. Lett. B 574, 156 (2003) [arXiv:hep-ph/0307181]

    Article  ADS  Google Scholar 

  47. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Lett. B 588, 7 (2004) [arXiv:hep-ph/0312262]

    Article  ADS  Google Scholar 

  48. J J.L. Feng, S. Su, F. Takayama, Phys. Rev. D 70, 075019 (2004) [arXiv:hep-ph/0404231]

    Article  ADS  Google Scholar 

  49. J.L. Feng, S. f. Su, F. Takayama, Phys. Rev. D 70, 063514 (2004) [arXiv:hep-ph/0404198]

    Article  ADS  Google Scholar 

  50. J.L. Feng, A. Rajaraman, F. Takayama, Phys. Rev. Lett. 91, 011302 (2003) [arXiv:hep-ph/0302215]

    Article  ADS  Google Scholar 

  51. H.P. Nilles, Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  52. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Lett. B 573, 162 (2003) [arXiv:hep-ph/0305212]

    Article  MATH  ADS  Google Scholar 

  53. J.R. Ellis, Phys. Rev. D 70, 055005 (2004) [arXiv:hep-ph/0405110]

    Article  ADS  Google Scholar 

  54. J. Polonyi, Budapest preprint KFKI-1977-93 (1977)

  55. R. Barbieri, S. Ferrara, C.A. Savoy, Phys. Lett. B 119, 343 (1982)

    Article  ADS  Google Scholar 

  56. Information about this code is available from K.A. Olive, it contains important contributions from T. Falk, G. Ganis, J. McDonald, K.A. Olive, Y. Santoso, M. Srednicki

  57. We use mainly the 7.69 version of ISASUGRA, whose basic documentation is found in H. Baer, F.E. Paige, S.D. Protopopescu, X. Tata, ISAJET 7.48: A Monte Carlo event generator for pp, p̄p, and e+e- reactions [hep-ph/0001086]. The latest update is available from http://paige.home.cern.ch/paige/

  58. J.R. Ellis, T. Falk, G. Ganis, K.A. Olive, M. Srednicki, Phys. Lett. B 510, 236 (2001) [arXiv:hep-ph/0102098]

    Article  ADS  Google Scholar 

  59. J.R. Ellis, K.A. Olive, Y. Santoso, New J. Phys. 4, 32 (2002) [arXiv:hep-ph/0202110]

    Article  ADS  MathSciNet  Google Scholar 

  60. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Lett. B 565, 176 (2003) [arXiv:hep-ph/0303043]

    Article  ADS  Google Scholar 

  61. J.R. Ellis, K.A. Olive, Y. Santoso, V.C. Spanos, Phys. Rev. D 69, 095004 (2004) [arXiv:hep-ph/0310356]

    Article  ADS  Google Scholar 

  62. V.D. Barger, C. Kao, Phys. Lett. B 518, 117 (2001) [arXiv:hep-ph/0106189]

    Article  ADS  Google Scholar 

  63. L. Roszkowski, R. Ruiz de Austri, T. Nihei, JHEP 0108, 024 (2001) [arXiv:hep-ph/0106334]

    Article  ADS  Google Scholar 

  64. A.B. Lahanas, V.C. Spanos, Eur. Phys. J. C 23, 185 (2002) [arXiv:hep-ph/0106345]

    Article  ADS  Google Scholar 

  65. H. Baer, C. Balazs, A. Belyaev, J.K. Mizukoshi, X. Tata, Y. Wang, JHEP 0207, 050 (2002) [arXiv:hep-ph/0205325]

    Article  ADS  MathSciNet  Google Scholar 

  66. R. Arnowitt, B. Dutta, arXiv:hep-ph/0211417

  67. H. Baer, C. Balazs, J. Cosmol. Astropart. Phys. 0305, 006 (2003) [arXiv:hep-ph/0303114]

    Article  ADS  Google Scholar 

  68. H. Baer, C. Balazs, A. Belyaev, T. Krupovnickas, X. Tata, JHEP 0306, 054 (2003) [arXiv:hep-ph/0304303]

    Article  ADS  Google Scholar 

  69. A.B. Lahanas, D.V. Nanopoulos, Phys. Lett. B 568, 55 (2003) [arXiv:hep-ph/0303130]

    Article  ADS  Google Scholar 

  70. U. Chattopadhyay, A. Corsetti, P. Nath, Phys. Rev. D 68, 035005 (2003) [arXiv:hep-ph/0303201]

    Article  ADS  Google Scholar 

  71. C. Munoz, arXiv:hep-ph/0309346

  72. CLEO Collaboration, S. Chen et al., Phys. Rev. Lett. 87, 251807 (2001) [arXiv:hep-ex/0108032]

    Article  ADS  Google Scholar 

  73. Belle Collaboration, P. Koppenburg et al., Phys. Rev. Lett. 93, 061803 (2004) [arXiv:hep-ex/0403004]

    Article  ADS  Google Scholar 

  74. BaBar Collaboration, B. Aubert et al., arXiv:hep-ex/0207076

  75. M. Ciuchini, G. Degrassi, P. Gambino, G.F. Giudice, Nucl. Phys. B 527, 21 (1998) [arXiv:hep-ph/9710335]

    Article  ADS  Google Scholar 

  76. CLEO Collaboration, Nucl. Phys. B 534, 3 (1998) [arXiv:hep-ph/9806308]

    Article  ADS  Google Scholar 

  77. C. Degrassi, P. Gambino, G.F. Giudice, JHEP 0012, 009 (2000) [arXiv:hep-ph/0009337]

    Article  ADS  Google Scholar 

  78. M. Carena, D. Garcia, U. Nierste, C.E. Wagner, Phys. Lett. B 499, 141 (2001) [arXiv:hep-ph/0010003]

    Article  ADS  Google Scholar 

  79. P. Gambino, M. Misiak, Nucl. Phys. B 611, 338 (2001)

    Article  ADS  Google Scholar 

  80. D.A. Demir, K.A. Olive, Phys. Rev. D 65, 034007 (2002) [arXiv:hep-ph/0107329]

    Article  ADS  Google Scholar 

  81. F. Borzumati, C. Greub, Y. Yamada, Phys. Rev. D 69, 055005 (2004) [arXiv:hep-ph/0311151]

    Article  ADS  Google Scholar 

  82. T. Hurth, Rev. Mod. Phys. 75, 1159 (2003) [arXiv:hep-ph/0212304]

    Article  ADS  Google Scholar 

  83. J.R. Ellis, S. Heinemeyer, K.A. Olive, G. Weiglein, JHEP 0502, 013 (2005) [arXiv:hep-ph/0411216]

    Article  ADS  MathSciNet  Google Scholar 

  84. ATLAS Collaboration, ATLAS detector and physics performance Technical Design Report, CERN/LHCC 99-14/15 (1999)

  85. CMS Collaboration, Technical Proposal, CERN/LHCC 94-38 (1994)

  86. JLC Group, S. Matsumoto et al., JLC-1, KEK Report 92-16 (1992)

  87. American Linear Collider Working Group, J. Bagger et al., The Case for a 500-GeV e+e- Linear Collider, SLAC-PUB-8495, BNL-67545, FERMILAB-PUB-00-152, LBNL-46299, UCRL-ID-139524, LBL-46299, Jul 2000, arXiv:hep-ex/0007022

  88. American Linear Collider Working Group Collaboration, T. Abe et al., Linear Collider Physics Resource Book for Snowmass 2001, SLAC-570, arXiv:hep-ex/0106055, hep-ex/0106056, hep-ex/0106057 and hep-ex/0106058

  89. TESLA Technical Design Report, DESY-01-011, Part III, Physics at an e+e- Linear Collider, (March 2001)

  90. CLIC Study Team, R.W. Assmann et al., A 3- TeV e+e- Linear Collider Based on CLIC Technology, ed. by G. Guignard, CERN 2000-08

  91. For more information about this project, see: http://ps-div.web.cern.ch/ps-div/CLIC/Welcome.html

  92. CLIC Physics Study Group, http://clicphysics.web.cern.ch/CLICphysics/ and Yellow Report in preparation

  93. Joint LEP 2 Supersymmetry Working Group, Combined LEP Chargino Results, up to 208 GeV, http://lepsusy.web.cern.ch/lepsusy/www/ inos_moriond01/charginos_pub.html

  94. Combined LEP Selectron/Smuon/Stau Results, 183–208 GeV, http://lepsusy.web.cern.ch/lepsusy/www/ sleptons_summer02/slep_2002.html

  95. LEP Higgs Working Group for Higgs boson searches, OPAL Collaboration, ALEPH Collaboration, DELPHI Collaboration and L3 Collaboration, Search for the Standard Model Higgs Boson at LEP, CERN-EP/2003-011, arXiv:hep-ex/0306033

  96. C.L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003)

    Article  ADS  Google Scholar 

  97. D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  98. The CDF Collaboration, the D0 Collaboration and the Tevatron Electroweak Working Group, arXiv:hep-ex/0507091

  99. This supersedes arXiv:hep-ex/0507006

  100. D0 Collaboration, V. Abazov et al., Nature 429, 638 (2004), hep-ex/0406031

    Article  ADS  Google Scholar 

  101. CDF Collaboration, D0 Collaboration, P. Azzi et al., hep-ex/0404010. The preferred range of mt has recently changed to 171.4±2.1 GeV, which includes the value of 172.7 GeV well within one σ: Tevatron Electroweak Working Group, arXiv:hep-ex/0608032

  102. CMS Collaboration, G.L. Bayatian et al., CMS Physics Technical Design Report, Volume II: Physics Performance, ed. by A. De Roeck et al., CERN/LHCC 2006-021, CMS TDR 8.2 (2006)

  103. R.H. Cyburt, J.R. Ellis, B.D. Fields, K.A. Olive, Phys. Rev. D 67, 103521 (2003) [arXiv:astro-ph/0211258]

    Article  ADS  Google Scholar 

  104. J.R. Ellis, K.A. Olive, E. Vangioni, Phys. Lett. B 619, 30 (2005) [arXiv:astro-ph/0503023]

    Article  ADS  Google Scholar 

  105. For another treatment, see K. Kohri, T. Moroi, A. Yotsuyanagi, Phys. Rev. D 73, 123511 (2006) [arXiv:hep-ph/0507245] and references therein

  106. K. Hamaguchi, Y. Kuno, T. Nakaya, M.M. Nojiri, Phys. Rev. D 70, 115007 (2004) [arXiv:hep-ph/0409248]

    Article  ADS  Google Scholar 

  107. J.L. Feng, B.T. Smith, Phys. Rev. D 71, 015004 (2005) [arXiv:hep-ph/0409278]

    Article  ADS  Google Scholar 

  108. J.L. Feng, B.T. Smith, Phys. Rev. D 71, 0109904 (2005) [Erratum]

    ADS  Google Scholar 

  109. T. Sjostrand, L. Lonnblad, S. Mrenna, arXiv:hep-ph/0108264

  110. S. Heinemeyer, W. Hollik, G. Weiglein, Comput. Phys. Commun. 124, 76 (2000) [hep-ph/9812320]

    Article  MATH  ADS  Google Scholar 

  111. S. Heinemeyer, Eur. Phys. J. C 9, 343 (1999) [arXiv:hep-ph/9812472]

    Article  ADS  Google Scholar 

  112. W. Beenakker, R. Hopker, M. Spira, arXiv:hep-ph/9611232

  113. S. Berge, M. Klasen, Eur. Phys. J. C 30, 123 (2003) [arXiv:hep-ph/0303032]

    Article  ADS  Google Scholar 

  114. For a review, see: G.F. Giudice, R. Rattazzi, Phys. Rep. 322, 419 (1999) [arXiv:hep-ph/9801271]

  115. S. Ambrosanio, B. Mele, S. Petrarca, G. Polesello, A. Rimoldi, JHEP 0101, 014 (2001) [arXiv:hep-ph/0010081]

    Article  ADS  Google Scholar 

  116. D. Treille, private communication

  117. S. Eidelman et al., Phys. Lett. B 592, 1 (2004)

    Article  ADS  Google Scholar 

  118. K. Hamaguchi, M. Nojiri, A. De Roeck, hep-ph/0612060

  119. P.F. Smith, J.R.J. Bennett, G.J. Homer, J.D. Lewin, H.E. Walford, W.A. Smith, Nucl. Phys. B 206, 333 (1982)

    Article  ADS  Google Scholar 

  120. MACRO Collaboration, M. Ambrosio et al., Eur. Phys. J. C 36, 323 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ellis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Roeck, A., Ellis, J., Gianotti, F. et al. Supersymmetric benchmarks with non-universal scalar masses or gravitino dark matter. Eur. Phys. J. C 49, 1041–1066 (2007). https://doi.org/10.1140/epjc/s10052-006-0182-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0182-6

Keywords

Navigation