Skip to main content
Log in

Discovery potential of R-hadrons with the ATLAS detector

  • Special Article - Scientific Note
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

The production of exotic heavy hadronic particles arises in several models for physics beyond the standard model. The focus is on R-hadrons, which are stable hadronized gluinos, predicted by certain supersymmetric models. Interactions and signatures of single R-hadrons are studied with the ATLAS simulation and reconstruction framework. The ATLAS fast simulation framework has been extended to include parameterizations for R-hadrons. Based on topological and kinematic variables only, the discovery potential of the ATLAS detector for R-hadron events produced in \(pp\to\tilde{g}\tilde{g}\), is studied for masses below 2 TeV/c2. R-hadrons with masses as predicted by standard SUSY scenarios would be discovered already in the very early stages of the running of the LHC. The discovery reach of heavy gluinos, predicted by for example split supersymmetry models, extends up to at least 1.8 TeV/c2 for three years running of the LHC at low luminosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Baer, K. Cheung, J.F. Gunion, Phys. Rev. D 59, 075002 (1999) and references therein

    Article  ADS  Google Scholar 

  2. N. Arkani-Hamed, S. Dimopoulos, JHEP 0506, 073 (2005) [hep-th/0405159]

    Article  ADS  Google Scholar 

  3. G.F. Giudice, A. Romanino, Nucl. Phys. B 709, 3 (2005) [hep-ph/0406088]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. G.R. Farrar, P. Fayet, Phys. Lett. B 76, 575 (1978)

    Article  ADS  Google Scholar 

  5. A.C. Kraan, Eur. Phys. J. C 37, 91 (2004)

    Article  ADS  Google Scholar 

  6. W. Kilian, T. Plehn, P. Richardson, E. Schmidt, Eur. Phys. J. C 39, 229 (2005) [hep-ph/0408088]

    Article  ADS  Google Scholar 

  7. J.L. Hewett, B. Lillie, M. Masip, T.G. Rizzo, JHEP 0409, 070 (2004) [hep-ph/0408248]

    Article  ADS  Google Scholar 

  8. A. Mafi, S. Raby, Phys. Rev. D 62, 035003 (2000)

    Article  ADS  Google Scholar 

  9. S. Raby, K. Tobe, Nucl. Phys. B 539, 3 (1999)

    Article  ADS  Google Scholar 

  10. C. Friberg, E. Norrbin, T. Sjöstrand, Phys. Lett. B 403, 329 (1997)

    Article  ADS  Google Scholar 

  11. T. Appelquist, H. Cheng, B.A. Dobrescu, Phys. Rev. D 64, 035002 (2001)

    Article  ADS  Google Scholar 

  12. P.H. Frampton, P.Q. Hung, P. Quang, Phys. Rev. D 58, 057704 (1998)

    Article  ADS  Google Scholar 

  13. H. Fritzsch, Phys. Lett. B 78, 611 (1978)

    Article  ADS  Google Scholar 

  14. P. Fishbane, S. Meshkov, P. Ramond, Phys. Lett. B 134, 81 (1984)

    Article  ADS  Google Scholar 

  15. G. Ingelman, C. Wetterich, Phys. Lett. B 174, 109 (1986)

    Article  ADS  Google Scholar 

  16. K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002)

    Article  ADS  Google Scholar 

  17. M.L. Perl et al, Int. J. Mod. Phys. A 16, 2137 (2001)

    Article  ADS  Google Scholar 

  18. A. Nisati, S. Petrarca, G. Salvini, Mod. Phys. Lett. A 12, 2213 (1997)

    Article  ADS  Google Scholar 

  19. A. Nisati, ATLAS note, ATL-DAQ-98-083 (1998)

  20. G. Polesello, A. Rimoldi, ATLAS note, ATL-MUON-99-006 (1999)

  21. S. Ambrosanio, B. Mele, A. Nisati, S. Petrarca, G. Polesello, A. Rimoldi, G. Salvini, Rend. Fis. Accad. Lincei 12, 5 (2001) [hep-ph/0012192]

    Article  Google Scholar 

  22. A.C. Kraan, Doctoral Thesis (Copenhagen, 2004), available at: http://www.nbi.dk/˜ackraan

  23. M. Chanowitz, S. Sharpe, Phys. Lett. B 126, 225 (1983)

    Article  ADS  Google Scholar 

  24. F. Buccella, G.R. Farrar, A. Pugliese, Phys. Lett. B 153, 311 (1985)

    Article  ADS  Google Scholar 

  25. M. Foster, C. Michael, Phys. Rev. D 59, 094509 (1999)

    Article  ADS  Google Scholar 

  26. T. Sjöstrand, private communication, see alsohttp://www.thep.lu.se/˜torbjorn/Pythia.html

  27. GEANT Detector Description and Simulation Tool (manual), CERN (Geneva, 1993)

  28. ATLAS Collaboration, ATLAS Detector and Physics Performance Technical Design Report, Vol. 1, CERN-LHCC-99-14 (1999)

  29. ATLAS Collaboration, ATLAS Level-1 Trigger Technical Design Report, CERN-LHCC-1998-14 (1998)

  30. ATLAS Collaboration, ATLAS High-Level Trigger, Data Acquisition and Controls, Technical Design Report, CERN-LHCC-2003-022 (2003)

  31. ATLAS Collaboration, ATLAS Inner Detector Technical Design Report, CERN-LHCC-97-16 (1997)

  32. ATLAS Collaboration, ATLAS Muon Spectrometer Technical Design Report, CERN-LHCC-97-22 (1997)

  33. C. Driouichi, Doctoral Thesis (Lund, 2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.B. Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraan, A., Hansen, J. & Nevski, P. Discovery potential of R-hadrons with the ATLAS detector. Eur. Phys. J. C 49, 623–640 (2007). https://doi.org/10.1140/epjc/s10052-006-0162-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0162-x

Keywords

Navigation