Skip to main content
Log in

More on the infrared renormalization group limit cycle in QCD

  • Theoretical Physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract

We present a detailed study of the recently conjectured infrared renormalization group limit cycle in QCD using chiral effective field theory. It was conjectured that small increases in the up and down quark masses can move QCD to the critical trajectory for an infrared limit cycle in the three-nucleon system. At the critical quark masses, the binding energies of the deuteron and its spin-singlet partner are tuned to zero and the triton has infinitely many excited states with an accumulation point at the three-nucleon threshold. We exemplify three parameter sets where this effect occurs at next-to-leading order in the chiral counting. For one of them, we study the structure of the three-nucleon system in detail using both chiral and contact effective field theories. Furthermore, we investigate the matching of the chiral and contact theories in the critical region and calculate the influence of the limit cycle on three-nucleon scattering observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Wilson, Rev. Mod. Phys. 55, 583 (1983)

    Article  ADS  Google Scholar 

  2. K.G. Wilson, Phys. Rev. D 3, 1818 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  3. D.J. Gross, F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973)

    Article  ADS  Google Scholar 

  4. H.D. Politzer, Phys. Rev. Lett. 30, 1346 (1973)

    Article  ADS  Google Scholar 

  5. S. Weinberg, Physica A 96, 327 (1979)

    Article  ADS  Google Scholar 

  6. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

    Article  ADS  Google Scholar 

  7. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  MathSciNet  Google Scholar 

  8. V. Bernard, N. Kaiser, U.-G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995)

    Article  ADS  Google Scholar 

  9. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  10. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  11. S.R. Beane, P.F. Bedaque, W.C. Haxton, D.R. Phillips, M.J. Savage, arXiv:nucl-th/0008064

  12. P.F. Bedaque, U. van Kolck, Ann. Rev. Nucl. Part. Sci. 52, 339 (2002)

    Article  ADS  Google Scholar 

  13. U.-G. Meißner, Nucl. Phys. A 751, 149 (2005)

    Article  ADS  Google Scholar 

  14. E. Epelbaum, Prog. Nucl. Part. Phys. 57, 654 (2006)

    Article  ADS  Google Scholar 

  15. S.R. Beane, P.F. Bedaque, M.J. Savage, U. van Kolck, Nucl. Phys. A 700, 377 (2002)

    Article  MATH  ADS  Google Scholar 

  16. S.R. Beane, M.J. Savage, Nucl. Phys. A 717, 91 (2003)

    Article  ADS  Google Scholar 

  17. S.R. Beane, M.J. Savage, Nucl. Phys. A 713, 148 (2003)

    Article  ADS  Google Scholar 

  18. E. Epelbaum, U.-G. Meißner, W. Glöckle, Nucl. Phys. A 714, 535 (2003)

    Article  MATH  ADS  Google Scholar 

  19. E. Braaten, H.-W. Hammer, Phys. Rev. Lett. 91, 102002 (2003)

    Article  ADS  Google Scholar 

  20. G.V. Skorniakov, K.A. Ter-Martirosian, Sov. Phys. JETP 4, 648 (1957)

    MathSciNet  Google Scholar 

  21. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 676, 357 (2000)

    Article  ADS  Google Scholar 

  22. V.N. Efimov, Sov. J. Nucl. Phys. 12, 589 (1971)

    Google Scholar 

  23. V.N. Efimov, Sov. J. Nucl. Phys. 29, 546 (1979)

    Google Scholar 

  24. S. Albeverio, R. Hoegh-Krohn, T.T. Wu, Phys. Lett. A 83, 105 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  25. V. Efimov, Nucl. Phys. A 362, 45 (1981)

    Article  ADS  Google Scholar 

  26. E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  27. U. van Kolck, J.L. Friar, T. Goldman, Phys. Lett. B 371, 169 (1996)

    Article  ADS  Google Scholar 

  28. E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 671, 295 (2000)

    Article  ADS  Google Scholar 

  29. E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner, H. Witala, Eur. Phys. J. A 15, 543 (2002)

    Article  ADS  Google Scholar 

  30. A. Nogga, R.G.E. Timmermans, U. van Kolck, Phys. Rev. C 72, 054006 (2005)

    Article  ADS  Google Scholar 

  31. N. Fettes, Pion–nucleon physics in chiral perturbation theory, Ph.D. Thesis, Universität Bonn, Germany, 2000, JUL-3814

  32. N. Fettes, V. Bernard, U.-G. Meißner, Nucl. Phys. A 669, 269 (2000)

    Article  ADS  Google Scholar 

  33. E. Epelbaum, U.-G. Meißner, W. Glöckle, C. Elster, Phys. Rev. C 65, 044001 (2002)

    Article  ADS  Google Scholar 

  34. E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner, H. Witala, Phys. Rev. C 66, 064001 (2002)

    Article  ADS  Google Scholar 

  35. D.B. Kaplan, Nucl. Phys. B 494, 471 (1997)

    Article  ADS  Google Scholar 

  36. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82, 463 (1999)

    Article  ADS  Google Scholar 

  37. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 646, 444 (1999)

    Article  ADS  Google Scholar 

  38. H.-W. Hammer, T. Mehen, Phys. Lett. B 516, 353 (2001)

    Article  ADS  Google Scholar 

  39. P.F. Bedaque, G. Rupak, H.W. Grießhammer, H.-W. Hammer, Nucl. Phys. A 714, 589 (2003)

    Article  MATH  ADS  Google Scholar 

  40. I.R. Afnan, D.R. Phillips, Phys. Rev. C 69, 034010 (2004)

    Article  ADS  Google Scholar 

  41. H.W. Grießhammer, Nucl. Phys. A 744, 192 (2004)

    Article  ADS  Google Scholar 

  42. M.C. Birse, J. Phys. A 39, L49 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. R.F. Mohr, R.J. Furnstahl, R.J. Perry, K.G. Wilson, H.-W. Hammer, Ann. Phys. 321, 225 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. NPLQCD Collaboration, S.R. Beane, P.F. Bedaque, K. Orginos, M.J. Savage, Phys. Rev. Lett. 97, 012001 (2006)

    Article  ADS  Google Scholar 

  45. T. Mehen, I.W. Stewart, M.B. Wise, Phys. Rev. Lett. 83, 931 (1999)

    Article  ADS  Google Scholar 

  46. K.G. Wilson, Nucl. Phys. Proc. Suppl. 140, 3 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-W. Hammer.

Additional information

PACS

12.38.Aw, 21.45.+v, 11.10.Hi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epelbaum, E., Hammer, HW., Meißner, UG. et al. More on the infrared renormalization group limit cycle in QCD. Eur. Phys. J. C 48, 169–178 (2006). https://doi.org/10.1140/epjc/s10052-006-0004-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-006-0004-x

Keywords

Navigation