Skip to main content
Log in

Electronic and optical properties of wolframite-type ScNbO\(_4\): the effect of the rare-earth doping

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Finding more favorable potential applications for a newly synthesized material like the wolframite-type ScNbO\(_4\) compound is always challenging. Doping it with rare-earth ions has the potential to be very promising. However, this task should be under systematic study. In this context, we used the charged point defects procedure within the density functional theory approach to conduct this research. The study begins by evaluating the stability as well as the optical and electronic properties of the undoped compound by means of the PBE-GGA, Meta-GGA, RPA@HSE, GW@PBE, and BSE methods. A good concordance was found with experimental evidence, while a large excitonic feature is shown in the optical spectra. The stability of a number of doped rare-earth ions on the ScNbO\(_4\) compound was then evaluated by checking the site and growth conditions. Furthermore, the (\(0/-1\)) charge transition level below the valence band maximum under rich and poor conditions of Yb-doped ion indicates a good choice for p-type applications, paving the way for reliable optoelectronic device realization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All relevant data are available from the corresponding author upon reasonable request.]

References

  1. E. Cavalli, P. Boutinaud, R. Mahiou, M. Bettinelli, P. Dorenbos, Luminescence dynamics in Tb\(^{3+}\) -doped CaWO\(_{4}\) and CaMoO\(_{4}\) crystals. Inorg. Chem. 49, 4916–4921 (2010). https://doi.org/10.1021/ic902445c

    Article  Google Scholar 

  2. A. Tang, T. Ma, L. Gu, Y. Zhao, J. Zhang, H. Zhang, F. Shao, H. Zhang, Luminescence properties of novel red-emitting phosphor InNb\(_{1-x}\)P\(_{x}\)O\(_{4}\):Eu\(^{3+}\) for white light emitting-diodes. Mater. Sci. Pol. 33, 331–334 (2015). https://doi.org/10.1515/msp-2015-0050

    Article  ADS  Google Scholar 

  3. Y. Li, S. Xu, The contribution of Eu\(^{3+}\) doping concentration on the modulation of morphology and luminescence properties of InVO\(_{4}\):Eu\(^{3+}\). RSC Adv. 8, 31905 (2018). https://doi.org/10.1039/C8RA02716A

    Article  ADS  Google Scholar 

  4. P. Botella, F. Enrichi, A. Vomiero, J.E. Muñoz-Santiuste, A.B. Garg, A. Arvind, F.J. Manjón, A. Segura, D. Errandonea, investigation on the luminescence properties of InMO\(_{4}\) (M = V\(^{5+}\), Nb\(^{5+}\), Ta\(^{5+}\)) crystals doped with Tb\(^{3+}\) or Yb\(^{3+}\). Rare Earth Ions ACS Omega 5(5), 2148–2158 (2020). https://doi.org/10.1021/acsomega.9b02862

  5. D. Errandonea, F.J. Manjon, Pressure effects on the structural and electronic properties of ABX\(_4\) scintillating crystals. Prog. Mater. Sci. 53, 711–773 (2008). https://doi.org/10.1016/j.pmatsci.2008.02.001

    Article  Google Scholar 

  6. D. Errandonea, A.B. Garg, Recent progress on the characterization of the high-pressure behaviour of AVO\(_4\) orthovanadates. Prog. Mater. Sci. 97, 123–169 (2018). https://doi.org/10.1016/j.pmatsci.2018.04.004

    Article  Google Scholar 

  7. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994). https://doi.org/10.1007/978-3-642-79017-1

    Book  Google Scholar 

  8. W. M. Yen, S. Shionoya, H. Yamamoto, Phosphor Handbook; Eds.; CRC Press: Boca Raton, FL, (2006). https://doi.org/10.1201/9781315222066

  9. S. Wachowski, B. Kamecki, P. Winiarz, K. Dzierzgowski, A. Mielewczyk-Gryń, M. Gazda, Tailoring structural properties of lanthanum orthoniobates through an isovalent substitution on the Nb-site. Inorg. Chem. Front 9, 2157–2166 (2018). https://doi.org/10.1039/C8QI00524A

    Article  Google Scholar 

  10. H. Sun, C. Yu, L. Zheng, F. Yang, Q. Mao, Q.S. Ding, Experimental and theoretical investigations of the electronic structure and luminescent properties of undoped and rare-earth-doped ScNbO\(_4\). J. Mater. Sci. Mater. Electron 31, 10260–10266 (2020). https://doi.org/10.1007/s10854-020-03572-8

    Article  Google Scholar 

  11. L.H. Brixner, On the structural and luminescent properties of the ScTa\(_{1-x}\)Nb\(_{x}\)O\(_4\) system. J. Chem. Educ. 57, 588–5909 (1980). https://doi.org/10.1021/ed057p588

    Article  Google Scholar 

  12. T. Ouahrani, A. B. Garg, R. Rao, P. Rodríguez-Hernández, A. Mun̄oz, M.Badawi, D. Errandonea, High-Pressure Properties of Wolframite-Type ScNbO\(_{4}\) J. Phys. Chem. C 126, 9, 4664–4676 (2022). https://doi.org/10.1021/acs.jpcc.1c10483

  13. A. Kitai, Luminescent Materials and Applications. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England (2008)

  14. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti et al., First principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014). https://doi.org/10.1103/RevModPhys.86.253

    Article  ADS  Google Scholar 

  15. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci. 6, 15–50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0

    Article  Google Scholar 

  16. G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558

    Article  ADS  Google Scholar 

  17. H.Z. Guedda, T. Ouahrani, A. Morales-García, Rafael Franco, MA Salvadó, P Pertierra, JM Recio Computer simulations of 3C-SiC under hydrostatic and non-hydrostatic stresses. Phys. Chem. Chem. Phys. 18, 8132–8139 (2016). https://doi.org/10.1039/C6CP00081A

  18. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  ADS  Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865

    Article  ADS  Google Scholar 

  20. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

    Article  ADS  Google Scholar 

  21. Á. Morales-García, R. Valero, R. Illas F. An empirical, yet practical way to predict the band gap in solids by using density functional band structure calculations. Chem. Phys. C 121, 34, 18862–18866 (2017). https://doi.org/10.1021/acs.jpcc.7b07421

  22. J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003). https://doi.org/10.1063/1.1564060

    Article  ADS  Google Scholar 

  23. M.S. Hybertsen, S.G. Louie, Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B Condens. Matter 34, 5390 (1986). https://doi.org/10.1103/PhysRevB.34.5390

    Article  ADS  Google Scholar 

  24. J. Sun, M. Marsman, G.I. Csonka, A. Ruzsinszky, P. Hao, Y.S. Kim, G. Kresse, J.P. Perdew, Self-consistent meta-generalized gradient approximation within the projector-augmented-wave method. Phys. Rev. B 84, 035117 (2011). https://doi.org/10.1103/PhysRevB.84.035117

    Article  ADS  Google Scholar 

  25. S. Albrecht, L. Reining, R. Del Sole, G. Onida Ab, Initio calculation of excitonic effects in the optical. Phys. Rev. Lett. 80, 4510 (1998). https://doi.org/10.1103/PhysRevLett.80.4510

    Article  ADS  Google Scholar 

  26. M. Rohlfing, S.G. Louie, Electron-hole excitations in semiconductors and insulators. Phys. Rev. Lett. 81, 2312 (1998). https://doi.org/10.1103/PhysRevLett.81.2312

    Article  ADS  Google Scholar 

  27. M. Gajdoš, K. Hummer, G. Kresse, Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006). https://doi.org/10.1103/PhysRevB.73.045112

    Article  ADS  Google Scholar 

  28. S.L. Adler, Quantum Theory of the Dielectric Constant in Real Solids. Phys. Rev. 126, 413 (1962). https://doi.org/10.1103/PhysRev.126.413

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. N. Wiser, Dielectric constant with local field effects included. Phys. Rev. 129, 62 (1963). https://doi.org/10.1103/PhysRev.129.62

    Article  ADS  MATH  Google Scholar 

  30. T. Ouahrani, A.H. Reshak, A. OterodelaRoza, M. Mebrouki, V. Luaña, First-principles study of structural, electronic, linear and nonlinear optical properties of Ga\(_{2}\)PSb ternary chalcopyrite. Eur. Phys. J. B 72(3), 361–366 (2019). https://doi.org/10.1140/epjb/e2009-00345-6

  31. A. Togo, I. Tanaka, First principles phonon calculations in materials science 108, 1–5 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021

  32. X. Gonze, C. Lee, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355 (1997). https://doi.org/10.1103/PhysRevB.55.10355

    Article  ADS  Google Scholar 

  33. A. Boonchun, K. Dabsamut, W. R. Lambrecht, First-principles study of point defects in Li\({{\rm GaO}}_{2}\). J. Appl. Phys 126, 155703 (2019). https://doi.org/10.1063/1.5126028

  34. C. Keller, über ternäre Oxide des Niobs und Tantals vom Typ ABO\(_4\). Z. Anorg. Allg. Chem. 318, 89–106 (1962). https://doi.org/10.1002/zaac.19623180108

  35. F. Bassani, G. Pastori Parravicini, Electronic States and optical transitions in solids, Pergamon Press (1975). https://doi.org/10.1063/1.3023374

  36. M. Fox, Optical properties of solids. Am. J. Phys. 70, 1269 (2002). https://doi.org/10.1119/1.1691372

    Article  ADS  Google Scholar 

  37. D. Errandonea, L. Gracia, R. Lacomba-Perales, A. Polian, J.C. Chervin, Compression of scheelite-type SrMoO4 under quasi-hydrostatic conditions: Redefining the high-pressure structural sequence J. Appl. Phys. 113, 123510 (2013). https://doi.org/10.1063/1.4798374

    Article  Google Scholar 

  38. J. Ruiz-Fuertes, D. Errandonea, R. Lacomba-Perales, A. Segura, J. González, F. Rodríguez, F.J. Manjón, S. Ray, P. Rodríguez-Hernández, A. Muñoz, Zh. Zhu, C.Y. Tu, High-pressure structural phase transitions in \({{\rm CuWO}}_{4}\) Phys. Rev. B 81, 224115 (2010). https://doi.org/10.1103/PhysRevB.81.224115

  39. L. Hedin, New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796 (1965). https://doi.org/10.1103/PhysRev.139.A796

    Article  ADS  Google Scholar 

  40. A. Segura, J.A. Sans, D. Errandonea, D. Martinez-García, V. Fages, High conductivity of Ga-doped rock-salt ZnO under pressure: hint on deep-ultraviolet-transparent conducting oxides. Appl. Phys. Lett. 88, 011910 (2006). https://doi.org/10.1063/1.2161392

    Article  ADS  Google Scholar 

  41. M. Ali, A. Khan, S.H. Khan, T. Ouahrani, G. Murtaza, R. Khenata, S.B. Omran, First principles study of Cu based delafossite transparent conducting oxides CuXO\(_{2}\) (X= Al, Ga, In, B, La, Sc, Y). Mater. Sci. Semicond. Proces 38, 57–66 (2015). https://doi.org/10.1016/j.mssp.2015.03.038

    Article  Google Scholar 

  42. T. Ouahrani, R. Khenata, B. Lasri, A.H. Reshak, A. Bouhemadou, S. Bin-Omran, First and second harmonic generation of the XAl\(_{2}\)Se\(_{4}\) (X= Zn, Cd, Hg) defect chalcopyrite compounds. Phys. B: Cond. Matter. 407, 3760–3766 (2012). https://doi.org/10.1016/j.physb.2012.05.057

  43. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson, The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013). https://doi.org/10.1063/1.4812323

    Article  ADS  Google Scholar 

  44. A.B. Garg, A. Liang, D. Errandonea, P. Rodríguez-Hernández, A. Muñoz, Monoclinic-triclinic phase transition induced by pressure in fergusonite-type \({{\rm YbNbO}}_{4}\) J. Phys. Condens. Matter 34, 174007 (2022). https://doi.org/10.1088/1361-648X/ac5202

Download references

Author information

Authors and Affiliations

Authors

Contributions

RMB: Conceptualization, investigation, writing—original draft; MB: DFT calculations; TO: contributed to analysis, Writing—review and editing.

Corresponding authors

Correspondence to Reda M. Boufatah or Tarik Ouahrani.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boufatah, R.M., Ouahrani, T. & Benaissa, M. Electronic and optical properties of wolframite-type ScNbO\(_4\): the effect of the rare-earth doping. Eur. Phys. J. B 95, 166 (2022). https://doi.org/10.1140/epjb/s10051-022-00427-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00427-5

Navigation