Skip to main content
Log in

Scattering of the asymmetric \(\phi ^6\) kinks from a \({\mathcal{PT}\mathcal{}}\)-symmetric perturbation: creating multiple kink–antikink pairs from phonons

  • Regular Article – Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Interaction of asymmetric \(\phi ^6\) kinks with a spatially localized \({\mathcal{PT}\mathcal{}}\)-symmetric perturbation is investigated numerically. It is shown that when the kink (antikink) hits the defect from the gain side, a final velocity of the kink decreases (increases), while for the kink and antikink coming from the opposite direction, their final velocities remain unchanged. It is also found that when the kink interacts with the defect from the gain side, multiple pairs of the kink–antikink are formed from small-amplitude waves (phonons) in the final states depending on the initial velocity of the initial kink and parameter of the perturbation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

The datasets generated during and analyzed during the current study are available from the authors on reasonable request.

References

  1. C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having \({\cal{PT} }\) symmetry. Phys. Rev. Lett. 80, 5243 (1998). https://doi.org/10.1103/PhysRevLett.80.5243. arXiv:physics/9712001

  2. C.M. Bender, D.C. Brody, H.F. Jones, Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002). https://doi.org/10.1103/PhysRevLett.89.270401. arXiv:quant-ph/0208076

  3. C.E. Ruter, K.G. Markris, R. El-Ganainy, D.N. Cristodoulides, M. Segev, D. Kip, Observation of parity-time symmetry in optics. Nat. Phys. 6, 192 (2010). https://doi.org/10.1038/nphys1515

    Article  Google Scholar 

  4. A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009). https://doi.org/10.1103/PhysRevLett.103.093902

    Article  ADS  Google Scholar 

  5. A. Regensburger, C. Bersch, M.A. Miri, G. Onishchukov, D.N. Christodoulides, U. Peschel, Parity-time synthetic photonic lattices. Nature. 488, 167 (2012). https://doi.org/10.1038/nature11298

    Article  ADS  Google Scholar 

  6. A. Regensburger, M.A. Miri, C. Bersch, J. Nager, G. Onishchukov, D.N. Christodoulides, U. Peschel, Observation of defect states in \({\cal{PT} }\)-symmetric optical lattices. Phys. Rev. Lett. 110, 223902 (2013). https://doi.org/10.1103/PhysRevLett.110.223902

    Article  ADS  Google Scholar 

  7. B. Peng, S.K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G.L. Long, S. Fan, F. Nori, C.M. Bender, L. Yang, Nonreciprocal light transmission in parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394 (2014). https://doi.org/10.1038/nphys2927. [arXiv:1308.4564]

    Article  Google Scholar 

  8. J. Schindler, A. Li, M.C. Zheng, F.M. Ellis, T. Kottos, Experimental study of active LRC circuits with \({\cal{PT} }\)-symmetries. Phys. Rev. A 84, 040101 (2011). https://doi.org/10.1103/PhysRevA.84.040101. [arXiv:11092913v1]

    Article  ADS  Google Scholar 

  9. J. Schindler, Z. Lin, J.M. Lee, H. Ramezani, F.M. Ellis, T. Kottos, \({\cal{PT} }\)-symmetric electronics. J. Phys. A Math. Theor. 45, 0444029 (2012). https://doi.org/10.1088/1751-8113/45/44/444029. [arXiv:1209.2347]

    Article  ADS  Google Scholar 

  10. N. Bender, S. Factor, J.D. Bodyfelt, H. Ramezani, D.N. Christodoulides, F.M. Ellis, T. Kottos, Observation of asymmetric transport in structures with active nonlinearities. Phys. Rev. Lett. 110, 234101 (2013). https://doi.org/10.1103/PhysRevLett.110.234101. [arXiv:1301.7337]

    Article  ADS  Google Scholar 

  11. H. Hodaei, M.A. Miri, M. Heinrich, D.N. Christodoulides, M. Khajavikhan, Parity-time symmetric microring lasers. Science. 346, 975 (2014). https://doi.org/10.1126/science.1258480

    Article  ADS  Google Scholar 

  12. S. Longhi, \({\cal{PT} }\)-symmetric laser absorber. Phys. Rev. A. 82, 031801 (2010). https://doi.org/10.1103/PhysRevA.82.031801. [arXiv:1008.5298]

    Article  ADS  Google Scholar 

  13. Y. Emery, M. Marino, M. Ronzani, Resonances and \({\cal{PT} }\)-symmetry in quantum curves. JHEP 04, 150 (2020). https://doi.org/10.1007/JHEP04(2020)150. [arXiv:1902.08606]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M. Ezawa, Non-Hermitian non-Abelian topological insulators with \({\cal{PT} }\)-symmetry. Phys. Rev. Res. 3, 043006 (2021). [arxiv:2107.08589]

    Article  Google Scholar 

  15. J. Wen, C. Zheng, Z. Ye, T. Xin, G. Long, Stable states with nonzero entropy under broken \({\cal{PT} }\)-symmetry. Phys. Rev. Res. 3, 013256 (2021)

    Article  Google Scholar 

  16. B. Paul, H. Dhar, B. Saha, Ghosts in higher derivative Maxwell–Chern–Simon’s theory and \({\cal{PT}}\)-symmetry. Phys. Lett. B 808, 135671 (2020). https://doi.org/10.1016/j.physletb.2020.135671. [arxiv:2005.12552]

    Article  MathSciNet  MATH  Google Scholar 

  17. C.M. Bender, S.F. ‘Brandt, J. Chen, Q. Wang, Ghost busting: \({\cal{PT} }\)-symmetric interpretation of the Lee model. Phys. Rev. 71, 025014 (2005). https://doi.org/10.1103/PhysRevD.71.025014. [arXiv:hep-th/0411064]

    Article  ADS  Google Scholar 

  18. C.T. West, T. Kottos, T. Prosen, \({\cal{PT} }\)-symmetric wave chaos. Phys. Rev. L L 104, 054102 (2010). https://doi.org/10.1103/PhysRevLett.104.054102. [arxiv:1002.3635]

    Article  ADS  Google Scholar 

  19. Ying Li et al., Critical Anti-parity-time symmetry in diffusive systems. Science 364, 170 (2019). https://doi.org/10.1126/science.aaw6259

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. P. Dorey, C. Dunning, R. Tateo, Supersymmetry and the spontaneous breakdown of \({\cal{PT} }\)-symmetry. J. Phys. A 34, L391 (2001). https://doi.org/10.1088/0305-4470/34/28/102. [arxiv:hep-th/0104119]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. B. Peng, S.K. Özdemir, W. Chen, F. Nori, L. Yang, Parity-time-symmetric whispering gallery microcavities. Nat. Phys. 10, 394 (2014). https://doi.org/10.1038/nphys2927

    Article  Google Scholar 

  22. J.-Y. Lien, Y.-N. Chen, N. Ishida, H.-B. Chen, C.-C. Hwang, F. Nori, Multistability and condensation of exciton-polaritons below threshold. Phys. Rev. B. 91, 024511 (2015). https://doi.org/10.1103/PhysRevB.91.024511

    Article  ADS  Google Scholar 

  23. T. Gao, E. Estrecho, Ky. Bliokh, T.C.H. Liew, M.D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto, F. Nori, Y.S. Kivshar, A.G. Truscott, R.G. Dall, E.A. Ostrovskaya, Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554 (2015). https://doi.org/10.1038/nature15522

    Article  ADS  Google Scholar 

  24. IYu. Chestnov, S.S. Demirchyan, A.P. Alodjants, Y.G. Rubo, A.V. Kavokin, Permanent Rabi oscillations in coupled exciton-photon systems with \({\cal{PT} }\)-symmetry. Sci. Rep. 6, 19551 (2016). https://doi.org/10.1038/srep19551. [arXiv:1503.07351]

    Article  ADS  Google Scholar 

  25. U. Al Khawaja, Critical soliton speed for quantum reflection by a reflectionless potential well. Phys. Rev. E 103, 062202 (2021). https://doi.org/10.1103/PhysRevE.103.062202

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Asad-uz-zaman, U. Al Khawaja, Critical Directional flow of solitons with asymmetric potential wells: Soliton diode. EPL E 101, 50008 (2013). https://doi.org/10.1209/0295-5075/101/50008/meta

    Article  ADS  Google Scholar 

  27. K. Javidan, Analytical formulation for soliton-potential dynamics. Phys. Rev. E 78, 046607 (2008). https://doi.org/10.1103/PhysRevE.78.046607

    Article  ADS  Google Scholar 

  28. A. Askari, D. Saadatmand, K. Javidan, Collective coordinate system in (2+1) dimensions: \(CP^1\) lumps-potential interaction. Waves Random Complex Media 29, 368 (2018). https://doi.org/10.1080/17455030.2018.1439203

    Article  MATH  Google Scholar 

  29. D. Saadatmand, K. Javidan, Soliton potential interaction in the nonlinear Klein–Gordon model. Phys. Scr. 85, 025003 (2012). https://doi.org/10.1088/0031-8949/85/02/025003. [arXiv:1107.1340]

    Article  ADS  MATH  Google Scholar 

  30. Yu.S. Kivshar, B.A. Malomed, interaction of a fluxon with a local inhomogeneity in a long Josephson junction. Phys. Lett. A 129, 443 (1988). https://doi.org/10.1016/0375-9601(88)90316-7

    Article  ADS  Google Scholar 

  31. Yu.S. Kivshar, B.A. Malomed, interaction of a fluxon with a local inhomogeneity in a long Josephson junction. Jpn. J. Appl. Phys 26, 1583 (1987). https://doi.org/10.7567/JJAPS.26S3.1583

    Article  Google Scholar 

  32. Z. Fei, Yu.S. Kivshar, L. Vazquez, Resonant kink-impurity interactions in the sine-Gordon model. Phys. Rev. A 45, 6019 (1992). https://doi.org/10.1103/PhysRevA.46.5214

    Article  ADS  Google Scholar 

  33. Z. Fei, Yu.S. Kivshar, L. Vazquez, Resonant kink-impurity interactions in the \(\phi ^4\) model. Phys. Rev. A 46, 5214 (1992). https://doi.org/10.1103/PhysRevA.46.5214

    Article  ADS  Google Scholar 

  34. C. Adam, K. Oles, T. Romanczukiewicz, A. Wereszczynski, Spectral walls in soliton collisions. Phys. Rev. Lett 122, 241601 (2019). https://doi.org/10.1103/PhysRevLett.122.241601

    Article  ADS  Google Scholar 

  35. C. Adam, K. Oles, T. Romanczukiewicz, A. Wereszczynski, W.J. Zakrzewski, Spectral walls in multifield kink dynamics collisions. JHEP 08, 147 (2021). https://doi.org/10.1007/JHEP08(2021)147

    Article  ADS  MATH  Google Scholar 

  36. P.G. Kevrekidis, Variational method for nonconservative field theories: formulation and two \({\cal{PT}}\)-symmetric case examples. Phys. Rev. A 89, 010102 (2014). https://doi.org/10.1103/PhysRevA.89.010102

    Article  ADS  Google Scholar 

  37. D. Saadatmand, S.V. Dmitriev, D.I. Borisov, P.G. Kevrekidis, M.A. Fatykhov, K. Javidan, Kink scattering from a parity-time-symmetric defect in the \(\phi ^4\) model. Commun. Nonlinear Sci. Numer. Simulat. 29, 267 (2015). https://doi.org/10.1016/j.cnsns.2015.05.012. [arXiv:1411.5857]

    Article  MathSciNet  MATH  Google Scholar 

  38. D. Saadatmand, S.V. Dmitriev, D.I. Borisov, P.G. Kevrekidis, M.A. Fatykhov, K. Javidan, Effect of the \(\phi ^4\) kink’s internal mode at scattering on a \({\cal{PT} }\)-symmetric defect. JETP Lett. 101, 497 (2015). https://doi.org/10.1134/S0021364015070140

    Article  ADS  Google Scholar 

  39. D. Saadatmand, D.I. Borisov, P.G. Kevrekidis, K. Zhou, S.V. Dmitriev, Resonant interaction of \(\phi ^4\) kink with spatially periodic \({\cal{PT} }\)-symmetric perturbation. Commun. Nonlinear Sci. Numer. Simulat. 56, 62 (2018). https://doi.org/10.1016/j.cnsns.2017.07.019. [arXiv:1611.08281]

    Article  ADS  MATH  Google Scholar 

  40. D. Saadatmand, S.V. Dmitriev, D.I. Borisov, P.G. Kevrekidis, Interaction of sine-Gordon kinks and breathers with a \({\cal{PT} }\)-symmetric defect. Phys. Rev. E 90, 052902 (2014). https://doi.org/10.1103/PhysRevE.90.052902. [arXiv:1408.2358]

    Article  ADS  Google Scholar 

  41. A. Alonso Izquierdo, J.M. Guilarte, N.G. de Almeida, Solitons and entanglement in the double sine-Gordon model. J. Phys. B 48, 015501 (2015). https://doi.org/10.1016/j.cnsns.2021.106183. [arXiv:1405.7830]

    Article  ADS  Google Scholar 

  42. D.K. Campbell, M. Peyrard, P. Sodano, Kink–antikink interactions in the double sine-Gordon equation. Physica D 19, 165 (1986). https://doi.org/10.1016/0167-2789(86)90019-9

    Article  ADS  MathSciNet  Google Scholar 

  43. V.A. Gani, A. Moradi Marjaneh, A. Askari, E. Belendryasova, D. Saadatmand, Scattering of the double sine-Gordon kinks. Eur. Phys. J. C 78, 345 (2018). https://doi.org/10.1140/epjc/s10052-018-5813-1. [arXiv:1711.01918]

    Article  ADS  Google Scholar 

  44. V.A. Gani, A. Moradi Marjaneh, D. Saadatmand, Multi-kink scattering in the double sine-Gordon model. Eur. Phys. J. C 79, 620 (2019). https://doi.org/10.1140/epjc/s10052-019-7125-5. [arXiv:1901.07966]

    Article  ADS  Google Scholar 

  45. A. Alonso Izquierdo, J. Queiroga Nunes, L.M. Nieto, Scattering between wobbling kinks. Phys. Rev. D 103, 045003 (2021). https://doi.org/10.1103/PhysRevD.103.045003. [arXiv:2007.15517]

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Alonso Izquierdo, J. Queiroga Nunes, L.M. Nieto, Asymmetric scattering between kinks and wobblers. Commun. Nonlinear Sci. Numer. Simulat. 107, 106183 (2022). https://doi.org/10.1016/j.cnsns.2021.106183. [arXiv:2109.13904]

    Article  MathSciNet  MATH  Google Scholar 

  47. P. Dorey, K. Mersh, T. Romańczukiewicz, Ya. Shnir, Kink–antikink collisions in the \(\phi ^6\) model. Phys. Rev. Lett. 107, 091602 (2011). https://doi.org/10.1103/PhysRevLett.107.091602. [arXiv:1101.5951]

    Article  ADS  Google Scholar 

  48. V.A. Gani, A. Moradi Marjaneh, P.A. Blinov, Explicit kinks in higher-order field theories. Phys. Rev. D 101, 125017 (2020). https://doi.org/10.1103/PhysRevD.101.125017. [arXiv:2002.09981]

    Article  ADS  MathSciNet  Google Scholar 

  49. V.A. Gani, A. Moradi Marjaneh, K. Javidan, Exotic final states in the \(\varphi ^8\) multi-kink collisions. Eur. Phys. J. C 81, 1124 (2021). https://doi.org/10.1140/epjc/s10052-021-09935-7. [arXiv:2106.06399]

    Article  ADS  Google Scholar 

  50. A. Moradi Marjaneh, V.A. Gani, D. Saadatmand, S.V. Dmitriev, K. Javidan, Multi-kink collisions in the \(\phi ^6\) model. JHEP 07, 028 (2017). https://doi.org/10.1007/JHEP07(2017)028. [arXiv:1704.08353]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. D. Bazeia, A.R. Gomes, K.Z. Nobrega, F.C. Simas, Kink scattering in a hybrid model. Phys. Lett. B. 793, 26 (2019). https://doi.org/10.1016/j.physletb.2019.04.013. [arXiv:1805.07017]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. D. Bazeia, A.R. Gomes, F.C. Simas, Semi-compactness and multiple oscillating pulses in kink scattering. Eur. Phys. J. C 81, 532 (2021). https://doi.org/10.1140/epjc/s10052-021-09336-w. [arXiv:2011.11157]

    Article  ADS  Google Scholar 

  53. J.G.F. Campos, A. Mohammadi, Wobbling double sine-Gordon kinks. JHEP 09, 067 (2021). [arXiv:2103.04908]

    Article  ADS  MathSciNet  Google Scholar 

  54. M. Mohammadi, N. Riazi, The affective factors on the uncertainty in the collisions of the soliton solutions of the double field sine-Gordon system. Commun. Nonlinear Sci. Numer. Simulat. 72, 176 (2019). https://doi.org/10.1016/j.cnsns.2018.12.014. [arXiv:1906.0749]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. M. Mohammadi, R. Dehghani, Kink–antikink collisions in the periodic \(\phi ^4\) model. Commun. Nonlinear Sci. Numer. Simulat. 94, 105575 (2020). https://doi.org/10.1016/j.cnsns.2020.105575. [arXiv:2005.11398]

    Article  MathSciNet  MATH  Google Scholar 

  56. I. Takyi, H. Weigel, Collective coordinates in one-dimensional soliton models revisited. Phys. Rev. D 94, 085008 (2016). https://doi.org/10.1103/PhysRevD.94.085008. [arXiv:1609.06833]

    Article  ADS  Google Scholar 

  57. H. Weigel, Collective Coordinate Methods and Their Applicability to \(\phi ^4\) Models, [arXiv:1809.03772]

  58. A. Moradi Marjaneh, D. Saadatmand, Kun Zhou, S.V. Dmitriev, M.E. Zomorrodian, High energy density in the collision of \(N\) kinks in the \(\phi ^4\) model. Commun. Nonlinear Sci. Numer. Simulat. 49, 30 (2017). https://doi.org/10.1016/j.cnsns.2017.01.022. [arXiv:1605.09767]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Zhiwei Fan, Boris. A. Malomed, Dynamical control of solitons in a parity-time-symmetric coupler by periodic management. Commun. Nonlinear Sci. Numer. Simulat 79, 104906 (2019). https://doi.org/10.1016/j.cnsns.2019.104906. [arXiv:190400434v2]

    Article  MathSciNet  MATH  Google Scholar 

  60. M. Peyravi, A. Montakhab, N. Riazi, A. Gharaati, Interaction properties of the periodic and step-like solutions of the double-sine-Gordon equation. Eur. Phys. J. B 72, 269 (2009). https://doi.org/10.1140/epjb/e2009-00331-0. [arXiv:0802.2776]

    Article  ADS  MATH  Google Scholar 

  61. M. Peyravi, N. Riazi, A. Montakhab, Static properties of the multiple-sine-Gordon systems. Eur. Phys. J. B 76, 547 (2010). https://doi.org/10.1140/epjb/e2010-00247-6. [arXiv:1001.5045]

    Article  ADS  MATH  Google Scholar 

  62. A. Askari, A. Moradi Marjaneh, Z.G. Rakhmatullina, M. Ebrahimi-Loushab, D. Saadatmand, V.A. Gani, P.G. Kevrekidis, S.V. Dmitriev, Collision of \(\varphi ^4\) kinks free of the Peierls–Nabarro barrier in the regime of strong discreteness. Chaos Solitons Fract. 138, 109854 (2020). https://doi.org/10.1016/j.chaos.2020.109854. arXiv:1912.07953

    Article  MathSciNet  MATH  Google Scholar 

  63. I.C. Christov, R.J. Decker, A. Demirkaya, V.A. Gani, P.G. Kevrekidis, A. Khare, A. Saxena, Kink–kink and kink–antikink interactions with long-range tails. Phys. Rev. Lett. 122, 171601 (2019). https://doi.org/10.1103/PhysRevLett.122.171601. [arXiv:1811.07872]

    Article  ADS  Google Scholar 

  64. Y. Zhong, X.-L. Du, Z.-C. Jiang, Y.-X. Liu, Y.-Q. Wang, Collision of two kinks with inner structure. JHEP 02, 153 (2020). https://doi.org/10.1007/JHEP02(2020)153. [arXiv:1906.02920]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. H. Yan, Y. Zhong, Yu.-X. Liu, Kei-ichi Maeda, Kink-antikink collision in a Lorentz-violating \(\phi ^4\) model. Phys. Lett. B 807, 135542 (2020). https://doi.org/10.1016/j.physletb.2020.135542. [arXiv:2004.13329]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

For A.M.M., this work is supported by Islamic Azad University Quchan branch under a grant. D.S. would like to thank B. Malomed for useful discussions. The work of D.S. is based upon research supported by the National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa.

Author information

Authors and Affiliations

Authors

Contributions

All stages of the article—including designing the study, performing the analytical calculations and numerical simulations, providing the results in 2D and 3D plots, and editing and production of the final form of the paper—have been carried out with the equal participation of the authors.

Corresponding author

Correspondence to Aliakbar Moradi Marjaneh.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadatmand, D., Marjaneh, A.M. Scattering of the asymmetric \(\phi ^6\) kinks from a \({\mathcal{PT}\mathcal{}}\)-symmetric perturbation: creating multiple kink–antikink pairs from phonons. Eur. Phys. J. B 95, 144 (2022). https://doi.org/10.1140/epjb/s10051-022-00405-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00405-x

Navigation