Skip to main content
Log in

The half-metallic predictions of M (M = Y, Zr, Nb)–Sc–Sn diluted ternary alloys via GGA and GGA + mBJ

  • Regular Article - Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The ab initio investigations of Mx (M = Y, Zr, Nb)–Sc1-x–Sn diluted ternary alloys were calculated for x = 0.25, 0.125, and 0.0625 ratios in GGA and GGA + mBJ methods. Half-metallic band gaps were observed in the spin-up electron states. Only the spin-up electrons of the Nb0.25Sc0.75Sn alloy cut the Fermi energy level and reduced the spin polarization amount to 75.24%. Band gap values were also obtained in both GGA and GGA + mBJ methods. When the GGA + mBJ method was used, an increase was observed in the half-metallic characters of the alloys. Therefore, all the alloys were obtained as true half-metallic ferromagnetic materials. Total magnetic moment values were obtained as 4.00 μB/f.u. in all ratios of Y–Sc–Sn alloys. Since Y and Sc are in the same period, this result is expected for half-metallic alloys. While the total magnetic moment was 3.00 μB/f.u. for the 0.25 ratio in the Zr–Sc–Sn alloy, it was obtained as 3.50 μB/f.u. and 3.75 μB/f.u. for the 0.125 and 0.0625 ratios, respectively. While the total magnetic moment of the Nb0.25Sc0.75Sn alloy was obtained as 1.923 μB/f.u., the magnetic moment values increased to 3.00 μB/f.u. and 3.50 μB/f.u., respectively, when the amount of Sc increased. In short, considering both their electronic and magnetic properties, Mx (M = Y, Zr, Nb)-Sc1-x-Sn ternary alloys are quite suitable for spintronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All the related are shown in tables and figures.]

References

  1. A. Hirohata, K. Yamada, Y. Nakatani, I.L. Prejbeanu, B. Dieny, P. Pirro, B. Hillebrands, J. Magn. Mag. Mat. 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711

    Article  Google Scholar 

  2. N. Alcheikh, S.B. Mbarek, H.M. Ouakad, M.I. Younis, Sensors and Actuators A 328, 112768 (2021). https://doi.org/10.1016/j.sna.2021.112768

    Article  Google Scholar 

  3. Z. Zhang, L. Sang, J. Huang, W. Chen, L. Wang, Y. Takahashi, S. Mitani, Y. Koide, S. Koizumi, M. Lao, Carbon 170, 294 (2020). https://doi.org/10.1016/j.carbon.2020.08.049

    Article  Google Scholar 

  4. E.M. Lee, Y. Ahn, J.Y. Son, J. All. Comp. 840, 155748 (2020). https://doi.org/10.1016/j.jallcom.2020.155748

    Article  Google Scholar 

  5. M.C. Kao, H.Z. Chen, K.H. Chen, J.B. Shi, J.H. Weng, K.P. Chen, Thin Solid Films 697, 137816 (2020). https://doi.org/10.1016/j.tsf.2020.137816

    Article  ADS  Google Scholar 

  6. H. Hwang, D.H. Yoon, I.H. Shin, I.S. Yoon, J.H. Kwack, O. Lee, Y.W. Park, B.K. Ju, Org. Electron. 84, 105755 (2020). https://doi.org/10.1016/j.orgel.2020.105755

    Article  Google Scholar 

  7. R.K. Mondal, S. Adhikari, V. Chatterjee, S. Pal, Mat. Res. Bulletin 140, 111258 (2021). https://doi.org/10.1016/j.materresbull.2021.111258

    Article  Google Scholar 

  8. Y. Sato, S.I. Gozu, T. Kita, S. Yamada, Physica E 12, 399 (2002). https://doi.org/10.1016/S1386-9477(01)00310-1

    Article  ADS  Google Scholar 

  9. N. Gyanchandani, S. Pawar, P. Maheshwary, K. Nemade, Mat. Sci. Eng. B 261, 114772 (2020). https://doi.org/10.1016/j.mseb.2020.114772

    Article  Google Scholar 

  10. R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J Buschow, Physical Review Letters, 50, 2024 (1983). https://doi.org/10.1103/PhysRevLett.50.2024

  11. R.J. Caraballo-Vivas, J.C.G. Tedesco, N.R. Checca, N.M. Fortunato, J.N. Gonçalves, D.R. Sanchez, A.M.G. Carvalho, J.S. Amaral, M.S. Reis, Intermetallics 111, 106502 (2019). https://doi.org/10.1016/j.intermet.2019.106502

    Article  Google Scholar 

  12. E.G. Özdemir, Z. Merdan, J. Mag. Magn. Mat. 514, 167198 (2020). https://doi.org/10.1016/j.jmmm.2020.167198

    Article  Google Scholar 

  13. E.G. Özdemir, E. Eser, Z. Merdan, Chin. J. Phy. 56, 1551 (2018). https://doi.org/10.1016/j.cjph.2018.05.020

    Article  Google Scholar 

  14. Y. Qian, H. Wu, D-C4N3: Physics Letters A 423, 127814 (2022). https://doi.org/10.1016/j.physleta.2021.127814

  15. T. He, X. Zhang, L. Wang, Y. Liu, X. Dai, L. Wang, G. Liu, Materials Today Physics 17, 100360 (2021). https://doi.org/10.1016/j.mtphys.2021.100360

    Article  Google Scholar 

  16. W. Yu, X. Cai, L. Zhang, B. Wang, Q. Wang, L. Lin, Z. Zhang, X. Wang, Comp. Mat. Sci. 171, 109215 (2020). https://doi.org/10.1016/j.commatsci.2019.109215

    Article  Google Scholar 

  17. E.G. Özdemir, Z. Merdan, Physica E 133, 114790 (2021). https://doi.org/10.1016/j.physe.2021.114790

    Article  Google Scholar 

  18. S. Gerivani, H.M. Moghaddam, J. Mag. Magn. Mat. 547, 168758 (2021). https://doi.org/10.1016/j.jmmm.2021.168758

    Article  Google Scholar 

  19. Y.X. Deng, S.Z. Chen, Y. Zeng, Y. Feng, W.X. Zhou, L.M. Tang, K.Q. Chen, Org. Electron. 63, 310 (2018). https://doi.org/10.1016/j.orgel.2018.09.046

    Article  Google Scholar 

  20. E.G. Özdemir, Z. Merdan, Mat. Res. Express 6, 086102 (2019). https://doi.org/10.1088/2053-1591/ab19fb

    Article  ADS  Google Scholar 

  21. A. Rajendran, R. John, J. Crystal Growth 581, 126468 (2022). https://doi.org/10.1016/j.jcrysgro.2021.126468

    Article  Google Scholar 

  22. A.R. Mishra, S. Pal, J. Sol. State Chem. 304, 122610 (2021). https://doi.org/10.1016/j.jssc.2021.122610

    Article  Google Scholar 

  23. M.J. Alrahamneh, J.M. Khalifeh, A.A. Mousa, Physica B 581, 411941 (2020). https://doi.org/10.1016/j.physb.2019.411941

    Article  Google Scholar 

  24. B. Saatçi, N. Şarlı, E.G. Özdemir, Z. Merdan, Phil. Mag. 101, 501 (2021). https://doi.org/10.1080/14786435.2020.1844330

    Article  ADS  Google Scholar 

  25. M.V. Lyange, V.V. Sokolovskiy, S.V. Taskaev, D.Y. Karpenkov, A.V. Bogach, M.V. Zheleznyi, I.V. Shchetinin, V.V. Khovaylo, V.D. Buchelnikov, Intermetallics 102, 132 (2018). https://doi.org/10.1016/j.intermet.2018.09.008

    Article  Google Scholar 

  26. E.G. Özdemir, Z. Merdan, Physica B 411841, 581 (2020). https://doi.org/10.1016/j.physb.2019.411841

    Article  Google Scholar 

  27. J.P. Duan, J.M. Zhang, X.M. Wei, Y.H. Huang, Thin Solid Films 720, 138523 (2021). https://doi.org/10.1016/j.tsf.2021.138523

    Article  ADS  Google Scholar 

  28. M.S. Abu-Jafar, R.T. Jaradat, A. Abu-Labdeh, R. Khenata, A.A. Mousa, Comp. Cond. Mat. 26, e00517 (2021). https://doi.org/10.1016/j.cocom.2020.e00517

    Article  Google Scholar 

  29. G. Gökoğlu, H. Yıldırım, Comp. Mat. Sci. 50, 1212 (2011). https://doi.org/10.1016/j.commatsci.2010.11.027

    Article  Google Scholar 

  30. D. Oudrane, I. Bourachid, H. Bouafia, B. Sahli, B. Abidri, D. Rached, Comp. Cond. Matter 26, e00537 (2021). https://doi.org/10.1016/j.cocom.2021.e00537

    Article  Google Scholar 

  31. Y. Tian, Z. Ge, A. Sun, Z. Zhu, Q. Zhang, S. Lv, H. Li, Chem. Phys. Lett. 754, 137776 (2020). https://doi.org/10.1016/j.cplett.2020.137776

    Article  Google Scholar 

  32. N. Zu, Q. Zhang, M. Zhang, J. Hao, X. Liu, R. Li, J. Solid State Chem. 303, 122521 (2021). https://doi.org/10.1016/j.jssc.2021.122521

    Article  Google Scholar 

  33. R. Yadav, A. Srivastava, J.A. Abraham, R. Sharma, S.A. Dar, Mat. Sci. Eng. B 283, 115781 (2022). https://doi.org/10.1016/j.mseb.2022.115781

    Article  Google Scholar 

  34. K.T. Chavan, S. Chandra, A. Kshirsagar, Mat. Today Com. 30, 103104 (2022). https://doi.org/10.1016/j.mtcomm.2021.103104

    Article  Google Scholar 

  35. M.A. Ali, R. Ullah, S. Abdullah, M.A. Khan, G. Murtaza, A. Laref, N.A. Kattan, J. Solid State Chem. 293, 121823 (2021). https://doi.org/10.1016/j.jssc.2020.121823

    Article  Google Scholar 

  36. L. Lin, L. Zhu, H. Tao, J. Huang, P. Wang, W. Yu, Z. Zhang, Solid State Com. 295, 32 (2019). https://doi.org/10.1016/j.ssc.2019.04.003

    Article  ADS  Google Scholar 

  37. K. Kaur, S. Sharma, Solid State Comm. 325, 114172 (2021). https://doi.org/10.1016/j.ssc.2020.114172

    Article  Google Scholar 

  38. A. Maftouh, R. Rami, L.B. Drissi, O. El Fatni, R. Ahl Laamara, Solid State Com. 339, 114482 (2021). https://doi.org/10.1016/j.ssc.2021.114482

  39. E.G. Özdemir, S. Doğruer, Phil. Mag. (2022). https://doi.org/10.1080/14786435.2022.2086315

    Article  Google Scholar 

  40. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Hvasnicka, J. Luitz, K. Schwarz, WIEN2k, Techn. Univ. Wien, Austria, ISBN 3–9501031–1–2, 2001

  41. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009). https://doi.org/10.1103/PhysRevLett.102.226401

    Article  ADS  Google Scholar 

  42. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, The J. Chem. Physics 152, 074101 (2020). https://doi.org/10.1063/1.5143061

    Article  Google Scholar 

  43. D. Singh, Planes Waves (Kluwer Academic Publishers, Boston, Dortrecht, London, Pseudo-Potentials and the LAPW Method, 1994)

    Google Scholar 

  44. J.P. Perdew, K. Burke, Y. Wang, Phy. Rev. B 54, 16533–16539 (1996). (PMID:9985776)

    Article  ADS  Google Scholar 

  45. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Let. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  46. F.D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proceedings of the National Academy of Sciences, United States of America 1944

Download references

Author information

Authors and Affiliations

Authors

Contributions

I the undersigned declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere. I confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed.

Corresponding author

Correspondence to Evren G. Özdemir.

Ethics declarations

Conflict of interest

The author declares that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, E.G. The half-metallic predictions of M (M = Y, Zr, Nb)–Sc–Sn diluted ternary alloys via GGA and GGA + mBJ. Eur. Phys. J. B 95, 129 (2022). https://doi.org/10.1140/epjb/s10051-022-00388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00388-9

Navigation