Skip to main content
Log in

Dissipation and friction of a quantum spin system

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigated the dissipation dynamics of a magnetic tip scanning the surface of a 3D ferromagnetic substrate at a velocity \({{\varvec{v}}}\) via a functional integral approach based on the Holstein–Primakoff boson representation of spin operators. The magnetic surface was parameterized by the XXZ model. And the degrees of freedom in the tip were taken as a single spin operator (M). The magnetic surface was coupled to the tip via a local exchange potential \(\frac{w}{2}\delta _{il}\). Moreover, the tip induced a surface potential \(f_{il}\) acting on the magnetic surface spin operators. After tracing over total internal degrees of freedom, we obtained the in–out quantum action. We calculated the imaginary part of the in–out quantum action and the frictional force as functions of speed \(v=|{{\varvec{v}}}|\). We found that the imaginary part of the in–out quantum action is suppressed as \(v\rightarrow 0\). The imaginary part of the in–out quantum action is proportional to the probability of ground state decay. Therefore, it implies dissipation of the system. The frictional force linearly depends on the velocity as \(v<0.04\) . While \(v>0.04\) the dependence of the frictional force on v becomes nonlinear.

GraphicAbstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  1. T. Baumberger, C. Caroli, Solid friction from stick-slip down to pinning and aging. Adv. Phys. 55(3–4), 279–348 (2006)

    Article  ADS  Google Scholar 

  2. O. Pfeiffer, R. Bennewitz, A. Baratoff et al., Lateral-force measurements in dynamic force microscopy. Phys. Rev. B 65(16), 161403 (2002)

  3. W. Dou, J.E. Subotnik, Universality of electronic friction: equivalence of von Oppen’s nonequilibrium Green’s function approach and the Head–Gordon–Tully model at equilibrium. Phys. Rev. B Condens. Matter Mater. Phys. 96(10), 104305-1-104305–7 (2017)

  4. D. Kadau, A. Hucht, D.E. Wolf, Magnetic friction in Ising spin systems. Phys. Rev. Lett. 101(13), 137205 (2008)

  5. C. Fusco, D.E. Wolf, U. Nowak, Magnetic friction of a nanometer-sized tip scanning a magnetic surface: dynamics of a classical spin system with direct exchange and dipolar interactions between the spins. Phys. Rev. B Condens. Matter 77(17), 998–1002 (2008)

  6. P. Grutter, P. Liu, et al., Magnetic dissipation force microscopy. Appl. Phys. Lett. 71(2), 279–279 (1997 )

  7. W.P.H.D. Boer, C. Weert, A note on Keldysh’s perturbation formalism. Physica A Stat. Mech. Appl. 98(3), 579C586 (1979)

    MathSciNet  Google Scholar 

  8. S. Qiang, E. Geva, A derivation of the mixed quantum-classical Liouville equation from the influence functional formalism. J. Chem. Phys. 121(8), 3393–3404 (2004)

    Article  ADS  Google Scholar 

  9. M.V. Rakov, M. Weyrauch, B. Braiorr-Orrs, XXZ model. Phys. Rev. B 93(5), 054417 (2016)

    Article  ADS  Google Scholar 

  10. J.A. Gyamfi, An Introduction to the Holstein–Primakoff transformation, with applications in magnetic resonance (2019). arXiv:1907.07122v1

  11. W. Yang, J. Yu, A path integral approach to electronic friction of a nanometer-sized tip scanning a metal surface. Commun. Theor. Phys. 73(4), 045701 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  12. M.B. Farias, C.D. Fosco, F.C. Lombardo et al., Quantum friction between graphene sheets. Phys. Rev. D 95(6), 065012 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. O. Krupkov, D. Smetanov, Legendre transformation for regularizable Lagrangians in field theory. Lett. Math. Phys. 58(3), 189–204 (2001)

    Article  MathSciNet  Google Scholar 

  14. L. Carvalho, The quantum action principle revisited. Can. J. Phys. (2008)

  15. K. Takatsuka, S. Takahashi, Towards many-dimensional real-time quantum theory for heavy-particle dynamics. II. Beyond semiclassics by quantum smoothing of the singularity in quantum-classical correspondence. Phys. Rev. A 89(1), 389–396 (2014)

    Article  Google Scholar 

  16. M.B. Farias, C.D. Fosco, F.C. Lombardo, et al., A functional approach to quantum friction: effective action and dissipative force (2014)

  17. J.C.D . Silva, F.C. Khanna, A.M. Neto, et al., Generalized Bogoliubov transformation for confined fields: applications in Casimir effect. Phys. Rev. A 66(5), 052101 (2002)

  18. W.Y. Ai , M. Drewes, Schwinger effect and false vacuum decay as quantum-mechanical tunneling of a relativistic particle (2020)

  19. A. Ranon, Hubbard–Stratonovich transformation and consistent ordering in the coherent state path integral: insights from stochastic calculus. J. Phys. A Math. Theor. 53(10), 105302 (2020)

Download references

Acknowledgements

Yang Wang would like to thank Kai Li and Qiang Sun for valuable discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Yang Wang.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (zip 238 KB)

Appendix A: The calculation of deriving the effective EOM for the tip trajectory

Appendix A: The calculation of deriving the effective EOM for the tip trajectory

Via Eqs. (19) and (20), the Feynman amplitude \({\mathcal {Z}}_{\texttt {in-in}}\) on CTP time interval reads

$$\begin{aligned} {\mathcal {Z}}_{\texttt {in-in}}&=K({{\varvec{q}}}_1,\phi ,x^0;{{\varvec{q}}}'_1,\phi '_1,0)K({{\varvec{q}}}'_2,\phi '_2,0;{{\varvec{q}}}_2,\phi ,x^0)\nonumber \\&=\int _{{{\varvec{q}}}_+(0)={{\varvec{q}}}'_1}^{{{\varvec{q}}}_+(x^0)={{\varvec{q}}}_1} \texttt {d}{{\varvec{q}}}_+ \int _{\phi _+(0)=\phi '_1}^{\phi _+(x^0)=\phi } \texttt {d}\phi _+\nonumber \\&\qquad \int _{{{\varvec{q}}}_-(0)={{\varvec{q}}}'_2}^{{{\varvec{q}}}_-(x^0)={{\varvec{q}}}_2} \texttt {d}{{\varvec{q}}}_- \int _{\phi _-(0)=\phi '_2}^{\phi _-(x^0)=\phi } \texttt {d}\phi _-\nonumber \\&\quad \times \exp [\texttt {i}S_\texttt {T}({{\varvec{q}}}_+,\phi _+)-\texttt {i}S_\texttt {T}({{\varvec{q}}}_-,\phi _-)]. \end{aligned}$$
(A1)

We always consider the case that the velocity of the tip is small enough. For this purpose, firstly we introduce new variables \({{\varvec{Q}}}=\frac{1}{2}({{\varvec{q}}}_+ + {{\varvec{q}}}_-)\) and \({{\varvec{r}}}={{\varvec{q}}}_+ - {{\varvec{q}}}_-\). \({{\varvec{Q}}}\) is the average location of the tip, and \({{\varvec{r}}}\) represents the fluctuation around \({{\varvec{Q}}}\). Secondly we expand \(\phi \) by the orthonormalized eigen-functions \(\psi _{mu}[{{\varvec{q}}}(x^0)]\) of the internal DOFs one-particle Hamiltonian \(E+V\).

$$\begin{aligned} \phi [x^0,{{\varvec{q}}}(x^0)]= \sum _{\mu } a_{\mu }(x^0) \psi _{\mu }[{{\varvec{q}}}(x^0)]. \end{aligned}$$
(A2)

The time dependence of \(\psi _{\mu }[{{\varvec{q}}}(x^0)]\) comes from \(V({{\varvec{q}}})\). The total action can be written as

$$\begin{aligned} S_{\texttt {CTP}}&=S_\texttt {T}({{\varvec{q}}}_+,\phi _+)-S_\texttt {T}({{\varvec{q}}}_-,\phi _-)\nonumber \\&=\int _{0}^{x^0} \texttt {d}z^0 \left[ m\frac{\texttt {d}{{\varvec{Q}}}}{\texttt {d}z^0}\frac{\texttt {d}{{\varvec{r}}}}{\texttt {d}z^0}-U({{\varvec{Q}}}+\frac{{{\varvec{r}}}}{2})+U\left( {{\varvec{Q}}}-\frac{{{\varvec{r}}}}{2}\right) \right] \nonumber \\&\quad +\int _{0}^{x^0} \texttt {d}z^0 \sum _{\mu \nu } a_{+,\mu }^{\dagger }\left[ \delta _{\mu \nu }{} \texttt {i}\frac{\partial }{\partial z^0}-\psi _{\mu }^{\dagger }(E+V)\psi _{\nu }\right. \nonumber \\&\quad \left. +\psi _{\mu }^{\dagger }{} \texttt {i}\frac{\partial }{\partial z^0}\psi _{\nu }\right] a_{+,\nu }\nonumber \\&\quad -\int _{0}^{x^0} \texttt {d}z^0 \sum _{\mu \nu } a_{-,\mu }^{\dagger }\left[ \delta _{\mu \nu }{} \texttt {i}\frac{\partial }{\partial z^0}-\psi _{\mu }^{\dagger }(E+V)\psi _{\nu }\right. \nonumber \\&\quad \left. +\psi _{\mu }^{\dagger }{} \texttt {i}\frac{\partial }{\partial z^0}\psi _{\nu }\right] a_{-,\nu }. \end{aligned}$$
(A3)

After performing the integrals over the internal DOFs \((a,a^{\dagger })\), \({\mathcal {Z}}_{\texttt {in-in}}\) can be written as

$$\begin{aligned} {\mathcal {Z}}_{\texttt {in-in}}&=\int \texttt {d}{{\varvec{Q}}} \int \texttt {d}{{\varvec{r}}}\times \exp \{\texttt {i}\int _{0}^{x^0} \texttt {d}z^0 \left[ m\frac{d{{\varvec{Q}}}}{\texttt {d}z^0}\frac{d{{\varvec{r}}}}{dz^0}\right. \nonumber \\&\quad \left. -U\left( {{\varvec{Q}}}+\frac{{{\varvec{r}}}}{2}\right) +U\left( {{\varvec{Q}}}-\frac{{{\varvec{r}}}}{2}\right) \right] \}\nonumber \\ {}&\quad \times \left[ {\det }^+\left( \delta _{\mu \nu }{} \texttt {i}\frac{\partial }{\partial z^0}-\psi _{\mu }^{\dagger }(E+V)\psi _{\nu }+\psi _{\mu }^{\dagger }{} \texttt {i}\frac{\partial }{\partial z^0}\psi _{\nu }\right) \right] ^{f}\nonumber \\ {}&\quad \times \left[ {\det }^-\left( \delta _{\mu \nu }{} \texttt {i}\frac{\partial }{\partial z^0}-\psi _{\mu }^{\dagger }(E+V)\psi _{\nu }+\psi _{\mu }^{\dagger }{} \texttt {i}\frac{\partial }{\partial z^0}\psi _{\nu }\right) \right] ^{f}, \end{aligned}$$
(A4)

f is a numerical factor decided by that the internal DOFs are Bosonic or Fermionic. \(\det ^+\) and \(\det ^-\) correspond the functional determinant over the two time path. Therefore the effective action of the tip reads

$$\begin{aligned}&S_\texttt {eff}({{\varvec{Q}}},{{\varvec{r}}})\nonumber \\&=\int _{0}^{x^0} \texttt {d}z^0 \texttt {i}\left[ m\frac{\texttt {d}{{\varvec{Q}}}}{\texttt {d}z^0}\frac{\texttt {d}{{\varvec{r}}}}{\texttt {d}z^0}-U\left( {{\varvec{Q}}}+\frac{{{\varvec{r}}}}{2}\right) +U\left( {{\varvec{Q}}}-\frac{{{\varvec{r}}}}{2}\right) \right] \nonumber \\ {}&\quad + f \ln {\det }^+\left( \delta _{\mu \nu }{} \texttt {i}\frac{\partial }{\partial z^0}-\psi _{\mu }^{\dagger }(E+V)\psi _{\nu }+\psi _{\mu }^{\dagger }{} \texttt {i}\frac{\partial }{\partial z^0}\psi _{\nu }\right) \nonumber \\ {}&\quad + f \ln {\det }^-\left( \delta _{\mu \nu }{} \texttt {i}\frac{\partial }{\partial z^0}-\psi _{\mu }^{\dagger }(E+V)\psi _{\nu }+\psi _{\mu }^{\dagger }{} \texttt {i}\frac{\partial }{\partial z^0}\psi _{\nu }\right) . \end{aligned}$$
(A5)

At the semiclassical level \({{\varvec{r}}}\) is small, thus we can expand the total action around \({{\varvec{Q}}}\). To the first order of \({{\varvec{r}}}\), the effective action can be written as

$$\begin{aligned}&\texttt {i}S_\texttt {eff}({{\varvec{Q}}},{{\varvec{r}}})\nonumber \\&=-\int \texttt {d}z^0\texttt {i}\left[ m\left( \frac{\texttt {d}}{\texttt {d}z^0}\right) ^2{{\varvec{Q}}}+\frac{\partial U({{\varvec{Q}}})}{\partial {{\varvec{Q}}}}\right] {{\varvec{r}}}\nonumber \\ {}&\quad + f \ln {\det }^+\left( \delta _{\mu \nu }{} \texttt {i}\frac{\partial }{\partial z^0}-\psi _{\mu }^{\dagger }(E+V)\psi _{\nu }+\psi _{\mu }^{\dagger }{} \texttt {i}\frac{\partial }{\partial z^0}\psi _{\nu }\right) \nonumber \\ {}&\quad + f \ln {\det }^-\left( \delta _{\mu \nu }{} \texttt {i}\frac{\partial }{\partial z^0}-\psi _{\mu }^{\dagger }(E+V)\psi _{\nu }+\psi _{\mu }^{\dagger }{} \texttt {i}\frac{\partial }{\partial z^0}\psi _{\nu }\right) . \end{aligned}$$
(A6)

Moreover we consider the case that the velocity of the tip is small enough, that is to say \(\dot{{{\varvec{q}}}}=\frac{\texttt {d}{{\varvec{q}}}}{\texttt {d}z^0}\) is small enough. And because the following equation

$$\begin{aligned} \texttt {i}\frac{\partial }{\partial z^0}\psi _{\nu }=\texttt {i}\dot{{{\varvec{q}}}}\frac{\partial }{\partial {{\varvec{q}}}}\psi _{\nu }. \end{aligned}$$
(A7)

We have

$$\begin{aligned}&\ln \det \left( \delta _{\mu \nu }{} \texttt {i}\frac{\partial }{\partial z^0}-\psi _{\mu }^{\dagger }(E+V)\psi _{\nu }+\psi _{\mu }^{\dagger }{} \texttt {i}\frac{\partial }{\partial z^0}\psi _{\nu }\right) \nonumber \\ {}&=\texttt {tr}\ln \left( D^{-1}+\psi _{\mu }^{\dagger }{} \texttt {i}\dot{{{\varvec{q}}}}\frac{\partial }{\partial {{\varvec{q}}}}\psi _{\nu }\right) \nonumber \\ {}&=\texttt {tr}\ln [D^{-1}\Big (1+D\psi _{\mu }^{\dagger }{} \texttt {i}\dot{{{\varvec{q}}}}\frac{\partial }{\partial {{\varvec{q}}}}\psi _{\nu }\Big ]\nonumber \\ {}&=\texttt {tr}\ln (D^{-1})+tr\ln \left( 1+D\psi _{\mu }^{\dagger }{} \texttt {i}\dot{{{\varvec{q}}}}\frac{\partial }{\partial {{\varvec{q}}}}\psi _{\nu }\right) \nonumber \\ {}&=\texttt {tr}\ln (D^{-1})+tr\left( D\psi _{\mu }^{\dagger }{} \texttt {i}\dot{{{\varvec{q}}}}\frac{\partial }{\partial {{\varvec{q}}}}\psi _{\nu }\right) \nonumber \\&\quad -\frac{1}{2} \left( D\psi _{\mu }^{\dagger }{} \texttt {i}\dot{{{\varvec{q}}}}\frac{\partial }{\partial {{\varvec{q}}}}\psi _{\nu }D\psi _{\mu }^{\dagger }{} \texttt {i}\dot{{{\varvec{q}}}}\frac{\partial }{\partial {{\varvec{q}}}}\psi _{\nu }\right) +.... \end{aligned}$$
(A8)

Here we introduce the operator \(D=(\delta _{\mu \nu }{} \texttt {i}\frac{\partial }{\partial z^0}-\psi _{\mu }^{\dagger }(E+V)\psi _{\nu })^{-1}\) which is the Green’s function of the internal DOFs in the energy representation. Considering \({{\varvec{q}}}_+={{\varvec{Q}}}+\frac{{{\varvec{r}}}}{2}\) and \({{\varvec{q}}}_-={{\varvec{Q}}}-\frac{{{\varvec{r}}}}{2}\), and defining \(C({{\varvec{q}}}):=\psi _{\mu }^{\dagger }\frac{\partial }{\partial {{\varvec{q}}}}\psi _{\nu }\), to the first order of \({{\varvec{r}}}\) we have

$$\begin{aligned} C({{\varvec{q}}}_+)=C({{\varvec{Q}}})+\frac{{{\varvec{r}}}}{2}\frac{\partial C({{\varvec{Q}}})}{\partial {{\varvec{Q}}}}, \end{aligned}$$
(A9)

and

$$\begin{aligned} C({{\varvec{q}}}_-)=C({{\varvec{Q}}})-\frac{{{\varvec{r}}}}{2}\frac{\partial C({{\varvec{Q}}})}{\partial {{\varvec{Q}}}}. \end{aligned}$$
(A10)

Therefore the term \(\texttt {tr} D\psi _{\mu }^{\dagger }{} \texttt {i}\dot{{{\varvec{q}}}}_+\frac{\partial }{\partial {{\varvec{q}}}_+}\psi _{\nu })-\texttt {tr}(D\psi _{\mu }^{\dagger }{} \texttt {i}\dot{{{\varvec{q}}}}_-\frac{\partial }{\partial {{\varvec{q}}}_-}\psi _{\nu })\) in the effective action becomes

$$\begin{aligned} \texttt {tr}[\texttt {i}D\dot{{{\varvec{Q}}}} {{\varvec{r}}} \frac{\partial C({{\varvec{Q}}})}{\partial {{\varvec{Q}}}}], \end{aligned}$$
(A11)

the term \(\texttt {tr}\ln D^{-1}\) is contributed from the ground state of the free internal DOFs, and it can be represented as \(-\texttt {i}\int \texttt {d}z^0\bar{{{\varvec{F}}}}\cdot {{\varvec{r}}}\). The effective action becomes

$$\begin{aligned} \texttt {i}S_{\texttt {eff}}&=-\int \texttt {d}z^0\texttt {i}\left[ m\left( \frac{\texttt {d}}{\texttt {d}z^0}\right) ^2{{\varvec{Q}}}+\frac{\partial U({{\varvec{Q}}})}{\partial {{\varvec{Q}}}}-\bar{{{\varvec{F}}}}\right] {{\varvec{r}}}\nonumber \\ {}&\quad +\texttt {i}f\int \texttt {d}y^0 \int \texttt {d}z^0 D(y^0-z^0)\frac{\partial C({{\varvec{Q}}})}{\partial {{\varvec{Q}}}} \dot{{{\varvec{Q}}}} {{\varvec{r}}}\nonumber \\ {}&\quad +\frac{\texttt {i}}{2}\int \texttt {d}y^0 \int \texttt {d}z^0 {{\varvec{r}}}\Pi (y^0,z^0){{\varvec{r}}}, \end{aligned}$$
(A12)

\(\Pi (y^0,z^0)\) is a integral kernel which can be determined by some complicated but not difficult calculations. This kernel can be obtained by Hubbard–Stratonovich transformation [19].

We set

$$\begin{aligned} \Theta \equiv m\left( \frac{\texttt {d}}{\texttt {d}z^0}\right) ^2{{\varvec{Q}}}+\frac{\partial U({{\varvec{Q}}})}{\partial {{\varvec{Q}}}}-\bar{{{\varvec{F}}}}-\int \texttt {d}y^0 D(y^0-z^0)\frac{\partial C({{\varvec{Q}}})}{\partial {{\varvec{Q}}}} \dot{{{\varvec{Q}}}}, \end{aligned}$$
(A13)

after integrating out the fluctuation \({{\varvec{r}}}\) in the Feynman amplitude, we obtain

$$\begin{aligned} {\mathcal {Z}}_{\texttt {in-in}}&=\int \texttt {d}{{\varvec{Q}}} \exp [-\texttt {i}\int \texttt {d}y^0 \int \texttt {d}z^0(\Theta \Pi ^{-1} \Theta )]\nonumber \\ {}&=\int \texttt {d}{{\varvec{Q}}} \int \texttt {d}\xi \delta (\Theta -\xi ) \exp [-\texttt {i}\int \texttt {d}y^0\nonumber \\&\quad \int \texttt {d}z^0(\xi \Pi ^{-1} \xi )]\equiv \int \texttt {d}{{\varvec{Q}}} \exp (\texttt {i}{\mathcal {A}}). \end{aligned}$$
(A14)

Here we introduce an auxiliary field \(\xi \). It describes the stochastic force acting on the tip. The Gaussian expectation of \(\xi \) and the second moment of \(\xi \) are given as

$$\begin{aligned} <\xi >&=\int \texttt {d}\xi \exp [-\int \texttt {d}z^0 \int \texttt {d}w^0 \xi \Pi ^{-1} \xi ] \xi =0, \end{aligned}$$
(A15)
$$\begin{aligned} <\xi (x^0)\xi (y^0)>&=\int \texttt {d}\xi \exp [-\int \texttt {d}z^0 \int \texttt {d}w^0 \xi \Pi ^{-1} \xi ] \xi (x^0)\xi (y^0)\nonumber \\&=\Pi (x^0,y^0). \end{aligned}$$
(A16)

The angle brackets \(<>\) mean the Gaussian expectation because the factor \(\texttt {e}^{-\texttt {i}\int \texttt {d}y^0 \int \texttt {d}z^0(\xi \Pi ^{-1} \xi )}\) in Eq. (34) is a Gaussian distribution function. The EOM of the tip is given by \(\exp (\texttt {i}{\mathcal {A}})=<\delta (\Theta -\xi )> \ne 0\), and \({\mathcal {A}}\) is the effective action of the DOF \({{\varvec{Q}}}\). The result is

$$\begin{aligned} m\left( \frac{\texttt {d}}{\texttt {d}z^0}\right) ^2{{\varvec{Q}}}+\frac{\partial U({{\varvec{Q}}})}{\partial {{\varvec{Q}}}}-\bar{{{\varvec{F}}}}-\int \texttt {d}y^0 D(y^0-z^0)\frac{\partial C({{\varvec{Q}}})}{\partial {{\varvec{Q}}}} \dot{{{\varvec{Q}}}}=\xi . \end{aligned}$$
(A17)

If we define the linear friction coefficient

$$\begin{aligned} \eta (y^0-z^0):=-D(y^0-z^0)\frac{\partial C({{\varvec{Q}}})}{\partial {{\varvec{Q}}}}, \end{aligned}$$
(A18)

the EOM becomes

$$\begin{aligned} m\left( \frac{\texttt {d}}{\texttt {d}z^0}\right) ^2{{\varvec{Q}}} =-\frac{\partial U({{\varvec{Q}}})}{\partial {{\varvec{Q}}}}+\bar{{{\varvec{F}}}}-\int dy^0 \eta (y^0-z^0) \dot{{{\varvec{Q}}}}+\xi . \end{aligned}$$
(A19)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jia, Y. Dissipation and friction of a quantum spin system. Eur. Phys. J. B 95, 75 (2022). https://doi.org/10.1140/epjb/s10051-022-00330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00330-z

Navigation