Skip to main content
Log in

Topological structural analysis and dynamical properties in MgSiO3 liquid under compression

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we report the changes in structural and dynamical properties of a MgSiO3 liquid under compression via molecular dynamics simulation. The short-range order is analyzed through the bond angles and bond lengths of the structural units, and the mean coordination number of both Si and Mg metals is found to increase with pressure. Intermediate-range order, characterized by the number of OTy links and of corner-, edge- and face-sharing bonds between two neighboring units, suggests the formation of Si–O- and Mg–O-rich regions in the magnesium silicate liquid. The self-diffusion and viscosity coefficients are then calculated to characterize the system dynamics and are found to be in good agreement with previous experiments and simulations. Most importantly, our result suggests a relationship between structural and dynamic heterogeneity of liquid magnesium silicates, particularly at high pressure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analysed during this study are included in this published article [and its supplementary information files].]

References

  1. A. Douy, Aqueous syntheses of forsterite (Mg2SiO4) and enstatite (MgSiO3). J. Sol-Gel. Sci. Technol. 24(3), 221–228 (2002)

    Article  Google Scholar 

  2. J. Temuujin, K. Okada, K.J.D. MacKenzie, Role of water in the mechanochemical reactions of MgO–SiO2 systems. J. Solid State Chem. 138(1), 169–177 (1998)

    Article  ADS  Google Scholar 

  3. S. Kohara et al., Glass formation at the limit of insufficient network formers. Science 303(5664), 1649–1652 (2004)

    Article  ADS  Google Scholar 

  4. S. Sen, H. Maekawa, G.N. Papatheodorou, Short-range structure of invert glasses along the pseudo-binary join MgSiO3–Mg2SiO4: results from 29Si and 25Mg MAS NMR spectroscopy. J. Phys. Chem. B 113(46), 15243–15248 (2009)

    Article  Google Scholar 

  5. M.C. Wilding, C.J. Benmore, J.K.R. Weber, Changes in the local environment surrounding magnesium ions in fragile MgO–SiO2 liquids. EPL (Europhysics Letters) 89(2), 26005 (2010)

    Article  ADS  Google Scholar 

  6. K. Zheng et al., Molecular dynamics study of the structural properties of calcium aluminosilicate slags with varying Al2O3/SiO2 ratios. ISIJ Int. 52(3), 342–349 (2012)

    Article  Google Scholar 

  7. J.B. Haskins et al., Thermodynamic and transport properties of meteor melt constituents from ab initio simulations: MgSiO3, SiO2, and MgO. J. Appl. Phys. 125(23), 235102 (2019)

    Article  ADS  Google Scholar 

  8. T.T. Nguyen et al., Molecular dynamics simulations of structural and mechanical properties in MgSiO3 glass. Physica Status Solidi (B) 256(11), 1900215 (2019)

    Article  ADS  Google Scholar 

  9. Y. Kono et al., Pressure-induced structural change in MgSiO3 glass at pressures near the Earth’s core–mantle boundary. Proc. Natl. Acad. Sci. 115(8), 1742 (2018)

    Article  ADS  Google Scholar 

  10. B.M. Al-Hasni, G. Mountjoy, A molecular dynamics study of the atomic structure of x(MgO) 100–x(SiO2). J. Non-Cryst. Solids 400, 33–44 (2014)

    Article  ADS  Google Scholar 

  11. L. Cormier, G.J. Cuello, Structural investigation of glasses along the MgSiO3–CaSiO3 join: diffraction studies. Geochim. Cosmochim. Acta 122, 498–510 (2013)

    Article  ADS  Google Scholar 

  12. L. Cormier, G.J. Cuello, Mg coordination in a MgSiO3 glass using neutron diffraction coupled with isotopic substitution. Phys. Rev. B 83(22), 224204 (2011)

    Article  ADS  Google Scholar 

  13. F.J. Spera, M.S. Ghiorso, D. Nevins, Structure, thermodynamic and transport properties of liquid MgSiO3: comparison of molecular models and laboratory results. Geochim. Cosmochim. Acta 75(5), 1272–1296 (2011)

    Article  ADS  Google Scholar 

  14. T. Taniguchi, M. Okuno, T. Matsumoto, X-ray diffraction and EXAFS studies of silicate glasses containing Mg, Ca and Ba atoms. J. Non-Cryst. Solids 211(1), 56–63 (1997)

    Article  ADS  Google Scholar 

  15. M.C. Wilding et al., Evidence of different structures in magnesium silicate liquids: coordination changes in forsterite- to enstatite-composition glasses. Chem. Geol. 213(1), 281–291 (2004)

    Article  ADS  Google Scholar 

  16. M.C. Wilding et al., Coordination changes in magnesium silicate glasses. Europhys. Lett. (EPL) 67(2), 212–218 (2004)

    Article  ADS  Google Scholar 

  17. M.C. Wilding, C.J. Benmore, J.K.R. Weber, In situ diffraction studies of magnesium silicate liquids. J. Mater. Sci. 43(14), 4707–4713 (2008)

    Article  ADS  Google Scholar 

  18. N.H. Son et al., Topology of SiOx-units and glassy network of magnesium silicate glass under densification: correlation between radial distribution function and bond angle distribution. Model. Simul. Mater. Sci. Eng. 28(6), 065007 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. P.S. Salmon et al., Pressure induced structural transformations in amorphous MgSiO3 and CaSiO3. J. Non-Cryst. Solids X 3, 100024 (2019)

    Google Scholar 

  20. O. Adjaoud, G. Steinle-Neumann, S. Jahn, Transport properties of Mg2SiO4 liquid at high pressure: physical state of a magma ocean. Earth Planet. Sci. Lett. 312(3), 463–470 (2011)

    Article  ADS  Google Scholar 

  21. O. Adjaoud, G. Steinle-Neumann, S. Jahn, Mg2SiO4 liquid under high pressure from molecular dynamics. Chem. Geol. 256(3), 185–192 (2008)

    Article  ADS  Google Scholar 

  22. D.B. Ghosh, B.B. Karki, Diffusion and viscosity of Mg2SiO4 liquid at high pressure from first-principles simulations. Geochim. Cosmochim. Acta 75(16), 4591–4600 (2011)

    Article  ADS  Google Scholar 

  23. D.J. Lacks, D.B. Rear, J.A. Van Orman, Molecular dynamics investigation of viscosity, chemical diffusivities and partial molar volumes of liquids along the MgO–SiO2 join as functions of pressure. Geochim. Cosmochim. Acta 71(5), 1312–1323 (2007)

    Article  ADS  Google Scholar 

  24. G.B. Martin et al., Structure, thermodynamic, and transport properties of molten Mg2SiO4: molecular dynamics simulations and model EOS. Am. Miner. 94(5–6), 693–703 (2009)

    Article  ADS  Google Scholar 

  25. B.B. Karki, L.P. Stixrude, Viscosity of MgSiO3 liquid at Earth’s mantle conditions: implications for an early magma ocean. Science 328(5979), 740–742 (2010)

    Article  ADS  Google Scholar 

  26. D. Nevins, F.J. Spera, M.S. Ghiorso, Shear viscosity and diffusion in liquid MgSiO3: transport properties and implications for terrestrial planet magma oceans. Am. Miner. 94(7), 975–980 (2009)

    Article  ADS  Google Scholar 

  27. A.R. Oganov, J.P. Brodholt, G. David Price, Comparative study of quasiharmonic lattice dynamics, molecular dynamics and Debye model applied to MgSiO3 perovskite. Phys. Earth Planet. Inter. 122(3), 277–288 (2000)

    Article  ADS  Google Scholar 

  28. N. Funamori et al., Exploratory studies of silicate melt structure at high pressures and temperatures by in situ X-ray diffraction. J. Geophys. Res. Solid Earth 109(B3), B03203 (2004)

    Article  ADS  Google Scholar 

  29. Y. Wang et al., Atomistic insight into viscosity and density of silicate melts under pressure. Nat. Commun. 5(1), 3241 (2014)

    Article  ADS  Google Scholar 

  30. J. Horbach, W. Kob, Static and dynamic properties of a viscous silica melt. Phys. Rev. B 60(5), 3169–3181 (1999)

    Article  ADS  Google Scholar 

  31. V. Van Hoang, Dynamical heterogeneity and diffusion in high-density Al2O3·2SiO2 melts. Physica B 400(1), 278–286 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Urbain, Y. Bottinga, P. Richet, Viscosity of liquid silica, silicates and alumino-silicates. Geochim. Cosmochim. Acta 46(6), 1061–1072 (1982)

    Article  ADS  Google Scholar 

  33. D.S. Sanditov, M.I. Ojovan, Relaxation aspects of the liquid–glass transition. Phys. Usp. 62(2), 111–130 (2019)

    Article  ADS  Google Scholar 

  34. J. Stenhammar et al., Activity-induced phase separation and self-assembly in mixtures of active and passive particles. Phys. Rev. Lett. 114(1), 018301 (2015)

    Article  ADS  Google Scholar 

  35. G. Gonnella et al., Motility-induced phase separation and coarsening in active matter. C R Phys. 16(3), 316–331 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haidang Phan.

Appendix

Appendix

See Figs. 12, 13 and 14.

Fig. 12
figure 12

The PRDF of Si–O (a) and Mg–O (b) pairs in MgSiO3 at pressures of 0, 15 and 30 GPa

Fig. 13
figure 13

The bond angle (left) and bond length (right) distribution of coordination units SiOx as a function of pressure

Fig. 14
figure 14

The bond angle (left) and bond length (right) distribution of coordination units MgOx as a function of pressure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Yen, N., Plan, E.L.C.V.M., Kien, P.H. et al. Topological structural analysis and dynamical properties in MgSiO3 liquid under compression. Eur. Phys. J. B 95, 62 (2022). https://doi.org/10.1140/epjb/s10051-022-00313-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-022-00313-0

Navigation