Skip to main content

Advertisement

Log in

Approaching the absolute zero of temperature via absorbing energy

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

For the Blume–Emery–Griffiths (BEG) model with a positive biquadratic coupling and without the ferromagnetic coupling, the microcanonical ensemble predicts that the entropy of this model is a multivalued and non-concave function of the energy, leading to an absolute zero temperature at its highest energy level. Via increasing the energy of a BEG system, its temperature can get close to absolute zero in local microcanonical dynamics. By building up a weak coupling between two identical BEG subsystems with their energies equal to half of the highest value of the energy of this model, one subsystem can absorb energy from another and both of them evolve to the absolute zero of temperature.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availibility Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data reported in the paper are available from the corresponding author on reasonable request.]

References

  1. E.D. Eastman, The third law of thermodynamics. Chem. Rev. 18(2), 257–275 (1936)

    Article  Google Scholar 

  2. M. Blume, V.J. Emery, R.B. Griffiths, Phys. Rev. A 4, 1071 (1971)

    Article  ADS  Google Scholar 

  3. F.C. Alcaraz, J.R. Drugowich de Felício, R. Köberle, J.F. Stilck, Phys. Rev. B 32, 7469 (1985)

    Article  ADS  Google Scholar 

  4. J. Barré, D. Mukamel, S. Ruffo, Phys. Rev. Lett. 87, 030601 (2001)

    Article  ADS  Google Scholar 

  5. R.B. Frigori, L.G. Rizzi, N.A. Alves, Eur. Phys. J. B 75, 311 (2010)

    Article  ADS  Google Scholar 

  6. V.V. Hovhannisyan, N.S. Ananikian, A. Campa, S. Ruffo, Phys. Rev. E 96, 062103 (2017)

    Article  ADS  Google Scholar 

  7. V.V. Prasad, A. Campa, D. Mukamel, S. Ruffo, Phys. Rev. E 100, 052135 (2019)

    Article  ADS  Google Scholar 

  8. T. Dauxois, S. Ruffo, M. Wilkens, E. Arimondo, Dynamics and Thermodynamics of Systems with Long-Range Interactions (Springer, New York, 2002)

    Book  Google Scholar 

  9. A. Campa, T. Dauxois, D. Fanelli, S. Ruffo, Physics of Long-Range Interacting Systems (Oxford University Press, Oxford, 2014)

    Book  Google Scholar 

  10. D. Mukamel, S. Ruffo, N. Schreiber, Phys. Rev. Lett. 95, 240604 (2005)

    Article  ADS  Google Scholar 

  11. J.-X. Hou, X.-C. Yu, J.-M. Hou, Int. J. Theor. Phys. 55, 3923–3926 (2016)

    Article  Google Scholar 

  12. J.-X. Hou, X.-C. Yu, Mod. Phys. Lett. B 32, 1850053 (2018)

    Article  ADS  Google Scholar 

  13. Z.-Y. Yang, J.-X. Hou, Mod. Phys. Lett. B 33, 1950072 (2019)

    Article  ADS  Google Scholar 

  14. Z.-Y. Yang, J.-X. Hou, Eur. Phys. J. B 92, 170 (2019)

    Article  ADS  Google Scholar 

  15. J.-X. Hou, Phys. Rev. E 99, 052114 (2019)

    Article  ADS  Google Scholar 

  16. J.-X. Hou, Eur. Phys. J. B 93, 82 (2020)

    Article  ADS  Google Scholar 

  17. Z.-Y. Yang, J.-X. Hou, Phys. Rev. E 101, 052106 (2020)

    Article  ADS  Google Scholar 

  18. Z.-X. Li, Y.-C. Yao, S. Zhang, J.-X. Hou, Mod. Phys. Lett. B 34, 2050318 (2020)

    Article  ADS  Google Scholar 

  19. J.-X. Hou, Eur. Phys. J. B 94, 6 (2021)

    Article  ADS  Google Scholar 

  20. Y.-C. Yao, J.-X. Hou, Int. J. Theor. Phys. 60, 968–975 (2021)

    Article  Google Scholar 

  21. S.-Y. Jiao, J.-X. Hou, Mod. Phys. Lett. B 35, 2150095 (2021)

    Article  ADS  Google Scholar 

  22. M. Kac, G.E. Uhlenbeck, P.C. Hemmer, J. Math. Phys. 4, 216–228 (1963)

    Article  ADS  Google Scholar 

  23. P. Gaspard, J. Stat. Mech. 2012, P08021 (2012)

  24. S. Friedli, Y. Velenik, Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction (Cambridge University Press, Cambridge, 2017)

    Book  Google Scholar 

  25. A. Deger, C. Flindt, Phys. Rev. Res. 2, 033009 (2020)

    Article  Google Scholar 

  26. G.C. Lau, R.S. Freitas, B.G. Ueland, B.D. Muegge, E.L. Duncan, P. Schiffer, R.J. Cava, Nat. Phys. 2, 249 (2006)

    Article  Google Scholar 

  27. H.D. Zhou, C.R. Wiebe, J.A. Janik, L. Balicas, Y.J. Yo, Y. Qiu, J.R.D. Copley, J.S. Gardner, Phys. Rev. Lett. 101, 227204 (2008)

    Article  ADS  Google Scholar 

  28. G.-W. Chern, M.J. Morrison, C. Nisoli, Phys. Rev. Lett. 111, 177201 (2013)

    Article  ADS  Google Scholar 

  29. A. Ramírez-Hernández, H. Larralde, F. Leyvraz, Phys. Rev. Lett. 100, 120601 (2008)

    Article  ADS  Google Scholar 

  30. A. Ramírez-Hernández, H. Larralde, F. Leyvraz, Phys. Rev. E 78, 061133 (2008)

    Article  ADS  Google Scholar 

  31. M. Creutz, Phys. Rev. Lett. 50, 1411 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  32. W. Nernst, Nachr. Kgl. Ges. Wiss. Goett. 1, 1–40 (1906)

    Google Scholar 

  33. L. Masanes, J. Oppenheim, Nat. Commun. 8, 14538 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J-XH provided the idea, made all the computations and wrote the manuscript.

Corresponding author

Correspondence to Ji-Xuan Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, JX. Approaching the absolute zero of temperature via absorbing energy. Eur. Phys. J. B 94, 151 (2021). https://doi.org/10.1140/epjb/s10051-021-00144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00144-5

Navigation