Skip to main content
Log in

Effect of strain on band engineering in gapped graphene

  • Regular Article - Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the effect of strain on the band engineering in gapped graphene subject to external sources. By applying the Floquet theory, we determine the effective Hamiltonian of electron dressed by a linearly, circularly, and an elliptically polarized dressing field in the presence of strain along armchair and zigzag directions. Our results show that the energy spectrum exhibits different symmetries, and for the strainless case, it takes an isotropic and anisotropic forms whatever the values of irradiation intensity, whereas it is linear as in the case of pristine graphene. It increases slowly when strain is applied along the armchair direction but rapidly for the zigzag case. Moreover, it is found that the renormalized band gap changes along different strain magnitudes and does not change for the polarization phase \(\theta \) compared to linear and circular polarizations where its values change oppositely.

Graphic Abstract

(color online) The energy spectrum \(\varepsilon \) of electron dressed by the linearly polarized field versus the wave vector component \(k_x\) for \({\Delta _{g}}=2\) meV, \(\hbar \omega =10\)  meV with three values of the irradiation intensities \(I=0.0\) (blue and magenta lines), \(I=13.3\) \(\hbox {kW/cm}^{2}\) (green and orange lines), \(I=26.7\) \(\hbox {kW/cm}^{2}\) (red and black lines). (a): Effect of armchair strain direction with \(S=0.7\). (b): Effect of zigzag strain direction with \(S=0.15\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available on request from the corresponding author [Ahmed Jellal].]

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005)

    Article  ADS  Google Scholar 

  4. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Strmer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Science 315, 1379 (2007)

    Article  ADS  Google Scholar 

  5. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  6. V.M. Pereira, A.C. Neto, N.M.R. Peres, Phys. Rev. B 80, 045401 (2009)

    Article  ADS  Google Scholar 

  7. M.A.H. Vozmedianoa, M.I. Katsnelson, F. Guinea, Phys. Rep. 496, 109 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. S.M. Choi, S.H. Jhi, Y.W. Son, Phys. Rev. B 81, 081407 (2010)

    Article  ADS  Google Scholar 

  9. H. Goudarzi, M. Khezerlou, H. Kamalipour, Superlattice Microstructure 83, 101 (2015)

    Article  ADS  Google Scholar 

  10. G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J.V.D. Brink, Phys. Rev. B 76, 073103 (2007)

    Article  ADS  Google Scholar 

  11. J. Jung, A.M. Dasilva, A.H. Macdonald, S. Adam, Nat. Commun. 6, 6308 (2015)

    Article  ADS  Google Scholar 

  12. H. Haugen, D.H. Hernando, A. Brataas, Phys. Rev. B 77, 115406 (2008)

    Article  ADS  Google Scholar 

  13. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, ACS Nano 2, 2301 (2008)

    Article  Google Scholar 

  14. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Phys. Rev. B 79, 205433 (2009)

    Article  ADS  Google Scholar 

  15. M.Y. Huang, H.G. Yan, C.Y. Chen, D.H. Song, T.F. Heinz, J. Hone, Proc. Natl. Acad. Sci 106, 7304 (2009)

    Article  ADS  Google Scholar 

  16. K. Sasaki, Y. Kawazoe, R. Saito, Prog. Theor. Phys. 113, 463 (2005)

    Article  ADS  Google Scholar 

  17. J.L. Maenes, Phys. Rev. B 76, 045430 (2007)

    Article  ADS  Google Scholar 

  18. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  19. B. Soodchomshom, P. Chantngarm, J. Supercond. Nov. Magn. 24, 1885 (2011)

    Article  Google Scholar 

  20. W.-X. Yan, L.-N. Ma, Physica B 445, 28 (2014)

    Article  ADS  Google Scholar 

  21. J. Dalibard, F. Gerbier, G. Juzelinas, P. hberg, Rev. Mod. Phys. 83, 1523 (2011)

  22. N. Goldman, G. Juzelinas, P. hberg, I. B. Spielman, Rep. Prog. Phys. 77, 126401 (2014)

  23. M. Polini, F. Guinea, M. Lewenstein, H.C. Manoharan, V. Pellegrini, Nat. Nanotechnol. 8, 625 (2013)

    Article  ADS  Google Scholar 

  24. M.A.H. Vozmediano, M.I. Katsnelson, F. Guinea, Phys. Rep. 496, 109 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  25. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  26. M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A.M. Andrews, S. Schartner, G. Strasser, M. Helm, Phys. Rev. Lett. 105, 167401 (2010)

    Article  ADS  Google Scholar 

  27. K. Dini, O.V. Kibis, I.A. Shelykh, Phys. Rev. B 93, 235411 (2016)

    Article  ADS  Google Scholar 

  28. F.K. Joibari, Y.M. Blanter, G.E.W. Bauer, Phys. Rev. B 90, 155301 (2014)

    Article  ADS  Google Scholar 

  29. K.L. Koshelev, V.Y. Kachorovskii, M. Titov, Phys. Rev. B 92, 235426 (2015)

    Article  ADS  Google Scholar 

  30. T. Oka, H. Aoki, Phys. Rev. B 79, 081406 (2009)

    Article  ADS  Google Scholar 

  31. O.V. Kibis, O. Kyriienko, I.A. Shelykh, Phys. Rev. B 84, 195413 (2011)

    Article  ADS  Google Scholar 

  32. M.M. Glazovand, S.D. Ganichev, Phys. Rep. 535, 101 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. O.V. Kibis, S. Morina, K. Dini, I.A. Shelykh, Phys. Rev. B 93, 115420 (2016)

    Article  ADS  Google Scholar 

  34. O.V. Kibis, K. Dini, I.V. Iorsh, I.A. Shelykh, Phys. Rev. B 95, 125401 (2017)

    Article  ADS  Google Scholar 

  35. S. Rahav, I. Gilary, S. Fishman, Phys. Rev. A 68, 013820 (2003)

    Article  ADS  Google Scholar 

  36. W. Yan, Physica B 504, 23 (2017)

    Article  ADS  Google Scholar 

  37. J.H. Wong, B.R. Wu, M.F. Lin, J. Phys. Chem. C 116, 8271 (2012)

    Article  Google Scholar 

  38. Y.B. ZelDovich, Sov. Phys. JETP 24, 1006 (1967)

    ADS  Google Scholar 

  39. M. Grifoni, P. Hänggi, Phys. Rep. 304, 229 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  40. G. Platero, R. Aguado, Phys. Rep. 395, 1 (2004)

    Article  ADS  Google Scholar 

  41. N. Goldman, J. Dalibard, Phys. Rev. X 4, 031027 (2014)

    Google Scholar 

Download references

Acknowledgements

The generous support provided by the Saudi Center for Theoretical Physics (SCTP) is highly appreciated by all authors. We are indebted to the referees for their instructive comments.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the paper.

Corresponding author

Correspondence to Ahmed Jellal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chnafa, H., Mekkaoui, M., Jellal, A. et al. Effect of strain on band engineering in gapped graphene. Eur. Phys. J. B 94, 39 (2021). https://doi.org/10.1140/epjb/s10051-021-00049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00049-3

Navigation