Skip to main content
Log in

First-principles study of the effective Hamiltonian for Dirac fermions with spin-orbit coupling in two-dimensional molecular conductor \(\alpha \)-(BETS)\(_2 \hbox {I}_3\)

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We employed first-principles density-functional theory (DFT) calculations to characterize Dirac electrons in quasi-two-dimensional molecular conductor \(\alpha \)-(BETS)\(_2 \hbox {I}_3\) [= \(\alpha \)-(BEDT–TSeF)\(_2 \hbox {I}_3\)] at a low temperature of 30 K. We provide a tight-binding model with intermolecular transfer energies evaluated from maximally localized Wannier functions, where the number of relevant transfer integrals is relatively large due to the delocalized character of Se p orbitals. The spin–orbit coupling gives rise to an exotic insulating state with an indirect band gap of about 2 meV. We analyzed the energy spectrum with a Dirac cone close to the Fermi level to develop an effective Hamiltonian with site potentials, which reproduces the spectrum obtained by the DFT band structure.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This paper has not deposited the associated data because the calculated crystal structural data will be published in reference no. 35, and its CIF file will be available in the Cambridge Crystallographic Data Centre (CCDC) database.].

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. A. Kobayashi, S. Katayama, K. Noguchi, Y. Suzumura, J. Phys. Soc. Jpn. 73, 3135 (2004)

    Article  ADS  Google Scholar 

  4. S. Katayama, A. Kobayashi, Y. Suzumura, J. Phys. Soc. Jpn. 75, 054705 (2006)

    Article  ADS  Google Scholar 

  5. R. Kondo, S. Kagoshima, J. Harada, Rev. Sci. Instrum. 76, 093902 (2005)

    Article  ADS  Google Scholar 

  6. H. Kino, T. Miyazaki, J. Phys. Soc. Jpn. 75, 034705 (2006)

    Article  ADS  Google Scholar 

  7. A. Kobayashi, S. Katayama, Y. Suzumura, H. Fukuyama, J. Phys. Soc. Jpn. 76, 034711 (2007)

    Article  ADS  Google Scholar 

  8. M.O. Goerbig, J.-N. Fuchs, G. Montambaux, F. Piéchon, Phys. Rev. B 78, 045415 (2008)

    Article  ADS  Google Scholar 

  9. K. Bender, I. Hennig, D. Schweitzer, K. Dietz, H. Endres, H.J. Keller, Mol. Cryst. Liq. Cryst. 108, 359 (1984)

    Article  Google Scholar 

  10. B. Rothaemel, L. Forro, J.R. Cooper, J.S. Schilling, M. Weger, P. Bele, H. Brunner, D. Schweitzer, H.J. Keller, Phys. Rev. B 34, 704 (1986)

    Article  ADS  Google Scholar 

  11. K. Kajita, T. Ojiro, H. Fujii, Y. Nishio, H. Kobayashi, A. Kobayashi, R. Kato, J. Phys. Soc. Jpn. 61, 23 (1992)

    Article  ADS  Google Scholar 

  12. H. Kino, H. Fukuyama, J. Phys. Soc. Jpn. 64, 1877 (1995)

    Article  ADS  Google Scholar 

  13. H. Seo, J. Phys. Soc. Jpn. 69, 805 (2000)

    Article  ADS  Google Scholar 

  14. Y. Takano, K. Hiraki, H.M. Yamamoto, T. Nakamura, T. Takahashi, J. Phys. Chem. Solids 62, 393 (2001)

    Article  ADS  Google Scholar 

  15. R. Wojciechowskii, K. Yamamoto, K. Yakushi, M. Inokuchi, A. Kawamoto, Phys. Rev. B 67, 224105 (2003)

    Article  ADS  Google Scholar 

  16. T. Kakiuchi, Y. Wakabayashi, H. Sawa, T. Takahashi, T. Nakamura, J. Phys. Soc. Jpn. 76, 113702 (2007)

    Article  ADS  Google Scholar 

  17. Y. Takano, K. Hiraki, Y. Takada, H.M. Yamamoto, T. Takahashi, J. Phys. Soc. Jpn. 79, 104704 (2010)

    Article  ADS  Google Scholar 

  18. M. Hirata, K. Ishikawa, K. Miyagawa, M. Tamura, C. Berthier, D. Basko, A. Kobayashi, G. Matsuno, K. Kanoda, Nat. Commun. 7, 12666 (2016)

    Article  ADS  Google Scholar 

  19. S. Katayama, A. Kobayashi, Y. Suzumura, Eur. Phys. J. B 67, 139 (2009)

    Article  ADS  Google Scholar 

  20. N. Tajima, M. Tamura, Y. Nishio, K. Kajita, Y. Iye, J. Phys. Soc. Jpn. 69, 543 (2000)

    Article  ADS  Google Scholar 

  21. N. Tajima, M. Tamura, Y. Nishio, K. Kajita, Y. Iye, J. Phys. Soc. Jpn. 71, 1832 (2002)

    Article  ADS  Google Scholar 

  22. N. Tajima, S. Sugawara, R. Kato, Y. Nishio, K. Kajita, Phys. Rev. Lett. 102, 176403 (2009)

    Article  ADS  Google Scholar 

  23. N. Tajima, S. Sugawara, M. Tamura, Y. Nishio, K. Kajita, J. Phys. Soc. Jpn. 75, 051010 (2006)

    Article  ADS  Google Scholar 

  24. N. Tajima, K. Kajita, Sci. Technol. Adv. Mater. 10, 024308 (2009)

    Article  Google Scholar 

  25. A. Kobayashi, S. Katayama, Y. Suzumura, Sci. Technol. Adv. Mater. 10, 024309 (2009)

    Article  Google Scholar 

  26. Y. Suzumura, A. Kobayashi, Crystal 2, 266 (2012)

    Article  Google Scholar 

  27. N. Tajima, Y. Nishio, K. Kajita, Crystal 2, 643 (2012)

    Article  Google Scholar 

  28. K. Kajita, Y. Nishio, N. Tajima, Y. Suzumura, A. Kobayashi, J. Phys. Soc. Jpn. 83, 072002 (2014)

    Article  ADS  Google Scholar 

  29. R. Kato, H.B. Cui, T. Tsumuraya, T. Miyazaki, Y. Suzumura, J. Am. Chem. Soc. 139, 1770 (2017)

    Article  Google Scholar 

  30. T. Tsumuraya, R. Kato, Y. Suzumura, J. Phys. Soc. Jpn. 87, 113701 (2018)

    Article  ADS  Google Scholar 

  31. B. Zhou, S. Ishibashi, T. Ishii, T. Sekine, R. Takehara, K. Miyagawa, K. Kanoda, E. Nishibori, A. Kobayashi, Chem. Commun. 55, 3327 (2019)

    Article  Google Scholar 

  32. M. Inokuchi, H. Tajima, A. Kobayashi, T. Ohta, H. Kuroda, R. Kato, T. Naito, H. Kobayashi, Bull. Chem. Soc. Jpn. 68, 547 (1995)

    Article  Google Scholar 

  33. K. Hiraki, S. Harada, K. Arai, Y. Takano, T. Takahashi, N. Tajima, R. Kato, T. Naito, J. Phys. Soc. Jpn. 80, 014715 (2011)

    Article  ADS  Google Scholar 

  34. T. Shimamoto, K. Arai, Y. Takano, K. Hiraki, T. Takahashi, N. Tajima, R. Kato, T. Naito, presented at JPS March Meeting, (2014)

  35. S. Kitou, T. Tsumuraya, H. Sawahata, F. Ishii, K. Hiraki, T. Nakamura, N. Katayama, H. Sawa, Phys. Rev. B (to be published)

  36. P. Alemany, J.-P. Pouget, E. Canadel, Phys. Rev. B 85, 195118 (2012)

    Article  ADS  Google Scholar 

  37. R. Kondo, S. Kagoshima, N. Tajima, R. Kato, J. Phys. Soc. Jpn. 78, 114714 (2009)

    Article  ADS  Google Scholar 

  38. T. Morinari, Y. Suzumura, J. Phys. Soc. Jpn. 83, 094701 (2014)

    Article  ADS  Google Scholar 

  39. S. Konschuh, M. Gmitra, J. Fabian, Phys. Rev. B 82, 245412 (2010)

    Article  ADS  Google Scholar 

  40. S. Roychoudhury, S. Sanvito, Phys. Rev. B 95, 085126 (2017)

    Article  ADS  Google Scholar 

  41. S.M. Winter, K. Riedl, R. Valenti, Phys. Rev. B 95, 060404(R) (2017)

    Article  ADS  Google Scholar 

  42. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  43. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  44. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  45. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  46. P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  47. P. Giannozzi et al., J. Phys. Condens. Matter 29, 465901 (2017)

    Article  Google Scholar 

  48. A. Dal Corso, Comput. Mater. Sci. 95, 337 (2014)

    Article  Google Scholar 

  49. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  50. N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)

    Article  ADS  Google Scholar 

  51. I. Souza, N. Marzari, D. Vanderbilt, Phys. Rev. B 65, 035109 (2001)

    Article  ADS  Google Scholar 

  52. A.A. Mostofi, J.R. Yates, G. Pizzi, Y.S. Lee, I. Souza, D. Vanderbilt, N. Marzari, Comput. Phys. Commun. 185, 2309 (2014). https://doi.org/10.1016/j.cpc.2007.11.016

  53. T. Mori, A. Kobayashi, Y. Sasaki, H. Kobayashi, G. Saito, H. Inokuchi, Chem. Lett. 13, 957–960 (1984). https://www.journal.csj.jp/doi/abs/10.1246/cl.1984.957

  54. T. Tsumuraya, J.-H. Song, A.J. Freeman, Phys. Rev. B 86, 075114 (2012)

    Article  ADS  Google Scholar 

  55. K. Kurita, T. Koretsune, Phys. Rev. B 102, 045109 (2020)

    Article  ADS  Google Scholar 

  56. P. Alemany, E. Canadell, J.-P. Pouget, Euro. Phys. Lett. 113, 27006 (2016)

    Article  ADS  Google Scholar 

  57. Y. Kiyota, I.-R. Jeon, O. Jeannin, M. Beau, T. Kawamoto, P. Alemany, E. Canadell, T. Mori, M. Fourmigue, Phys. Chem. Chem. Phys. 21, 22639–22646 (2019)

    Article  Google Scholar 

  58. J. Heyd, G.E. Scuseria, J. Chem. Phys. 121, 1187 (2004)

    Article  ADS  Google Scholar 

  59. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006)

    Article  ADS  Google Scholar 

  60. G. Giovannetti, S. Kumar, A. Stroppa, J. Brink, S. Picozzi, Phys. Rev. Lett. 113, 266401 (2009)

    Article  ADS  Google Scholar 

  61. T. Tsumuraya, H. Seo, T. Miyazaki, Phys. Rev. B 101, 045114 (2020)

    Article  ADS  Google Scholar 

  62. H. Aizawa, T. Koretsune, K. Kuroki, H. Seo, J. Phys. Soc. Jpn. 87, 093701 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Sawa, S. Kitou, A. Kobayashi, K. Yoshimi, D. Ohoki, K. Kishigi, F. Ishii, H. Sawahata, N. Tajima, S. Fujiyama, H. Maebashi, R. Kato, M. Naka, and H. Seo for fruitful discussions. This work was supported by a Grant-in-Aid for Scientific Research (Grants No. JP19K21860) and JST CREST Grant No. JPMJCR18I2. TT is partially supported by MEXT Japan, Leading Initiative for Excellent Young Researchers (LEADER). Cooperative Research Program and the Supercomputing Consortium for the Center for Computational Materials Science at the Institute for Materials Research (IMR), Tohoku University. The computations were mainly carried out using the computer facilities of ITO at the Research Institute for Information Technology, Kyushu University, and MASAMUNE at IMR, Tohoku University, Japan.

Author information

Authors and Affiliations

Authors

Contributions

TT performed first-principles calculations, derived the effective transfer energies, and wrote the manuscript. YS analyzed the effective tight-binding model. Both TT and YS agreed with all the contents of the present manuscript.

Corresponding author

Correspondence to Takao Tsumuraya.

Appendices

Site-energy potentials

We define site potentials acting on B and C sites, \(\varDelta V_\mathrm{B}\) and \(\varDelta V_\mathrm{C}\), which are measured from site energy at A (\(A^\prime \)) site, \(V_\mathrm{A}\) [37]:

$$\begin{aligned} \varDelta V_\mathrm{B}= & {} V_\mathrm{B} - V_\mathrm{A},\\ \varDelta V_\mathrm{C}= & {} V_\mathrm{C} - V_\mathrm{A}, \end{aligned}$$

where \(V_\mathrm{A}\), \(V_\mathrm{B}\), and \(V_\mathrm{C}\) are the site energies at each molecule that were calculated using MLWFs \(|\phi _{\alpha ,0} \rangle \):

$$\begin{aligned} V_{\alpha } =\langle \phi _{\alpha , \sigma ,0}| H |\phi _{\alpha , \sigma ^{\prime },0} \rangle , \end{aligned}$$

where \({\alpha }\) indicates A (= \(A^{\prime }\)), B, and C molecules. These site potentials are referred as to \(\varDelta V_\mathrm{B}^{\mathrm{DFT}}\) and \(\varDelta V_\mathrm{C}^{\mathrm{DFT}}\) in the present study, and listed in Table 1.

Matrix elements

In terms of Eq. (1b) with \(X= \mathrm{e}^{ik_x}\), \(\bar{X}= \mathrm{e}^{-ik_x}\), \(Y= \mathrm{e}^{ik_y}\), and \(\bar{Y}= \mathrm{e}^{-ik_y}\), matrix elements, \(t_{ij} = ({\hat{H}})_{ij}\), are given by:

$$\begin{aligned} t_{11}= & {} t_{22} = t_{55} =t_{66} =a_{1d}(Y+\bar{Y}) +s1(X+\bar{X}) \; , \\ t_{33}= & {} = t_{77}= a_{3d}(Y+\bar{Y}) + s3(X + \bar{X})+ \varDelta V_\mathrm{B} \; , \\ t_{44}= & {} t_{88} = a_{4d}(Y+\bar{Y}) + s4(X + \bar{X})+ \varDelta V_\mathrm{C} \; , \\ t_{12}= & {} a_3+a_2Y+d_0\bar{X}+ d_1XY \; , \\ t_{13}= & {} b_3+b_2\bar{X}+ c_2 \bar{X} Y + c_4\bar{X}\bar{Y} \; , \\ t_{14}= & {} b_4Y+b_1\bar{X}Y+c_1\bar{X} + c_3 \; , \\ t_{23}= & {} b_2+b_3\bar{X}+c_2 \bar{Y} + c_4 {Y} \; , \\ t_{24}= & {} b_1+b_4\bar{X}+c_1Y + c_3\bar{X}Y \; , \\ t_{34}= & {} a_1+a_1Y + d_2\bar{X}+d_3X + d_2 XY+d_3\bar{X}Y \\ t_{17}= & {} b2_\mathrm{so1} \bar{X} + c2_\mathrm{so1}\bar{X} Y + c4_\mathrm{so1}\bar{X} \bar{Y} \; , \\ t_{18}= & {} b1_\mathrm{so1}\bar{X}Y + b4_{so1} Y + c1_\mathrm{so1} \bar{X}\; , \\ t_{27}= & {} b2_\mathrm{so1} + c2_\mathrm{so1} \bar{Y}+ c4_\mathrm{so1} Y \; , \\ t_{28}= & {} b1_\mathrm{so1} + c1_\mathrm{so1}Y + c3_{so1}\bar{X}Y \; , \\ t_{35}= & {} b2_\mathrm{so2} X + c2_\mathrm{so2}X \bar{Y}+ c4_\mathrm{so2}X Y \; , \\ t_{36}= & {} b2_\mathrm{so2} + c2_\mathrm{so2} Y + c4_\mathrm{so2} \bar{Y}\; , \\ t_{45}= & {} b1_\mathrm{so2}X \bar{Y}+ b4_\mathrm{so2}\bar{Y}+ c1_\mathrm{so2}X \; , \\ t_{46}= & {} b1_\mathrm{so2} + c1_\mathrm{so2} \bar{Y}+ c3_\mathrm{so2}X \bar{Y}\; , \end{aligned}$$

and \(t_{15} = t_{16} = t_{25} = t_{26} =t_{37} = t_{38} = t_{47} = t_{48} = 0\), and \(t_{ji} = t_{ij}^*\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsumuraya, T., Suzumura, Y. First-principles study of the effective Hamiltonian for Dirac fermions with spin-orbit coupling in two-dimensional molecular conductor \(\alpha \)-(BETS)\(_2 \hbox {I}_3\). Eur. Phys. J. B 94, 17 (2021). https://doi.org/10.1140/epjb/s10051-020-00038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-020-00038-y

Navigation