Skip to main content
Log in

Thermoelectric properties of Wigner crystal in two-dimensional periodic potential

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study numerically transport and thermoelectric properties of electrons placed in a two-dimensional (2D) periodic potential. Our results show that the transition from sliding to pinned phase takes place at a certain critical amplitude of lattice potential being similar to the Aubry transition for the one-dimensional Frenkel-Kontorova model. We show that the 2D Aubry pinned phase is characterized by high values of Seebeck coefficient S ≈ 12. At the same time we find that the value of Seebeck coefficient is significantly influenced by the geometry of periodic potential. We discuss possibilities to test the properties of 2D Aubry phase with electrons on a surface of liquid helium.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Wigner, Phys. Rev. 46, 1002 (1934)

    Article  ADS  Google Scholar 

  2. Y. Monarkha, K. Kono,Two-Dimensional Coulomb liquids and solids (Springer-Verlag, Berlin, 2004)

  3. J.S. Meyer, K.A. Matveev, J. Phys. C.: Condens. Matter 21, 023203 (2009)

    ADS  Google Scholar 

  4. I. Garcia-Mata, O.V. Zhirov, D.L. Shepelyansky, Eur. Phys. J. D 41, 325 (2007)

    Article  ADS  Google Scholar 

  5. O.M. Braun, Yu.S. Kivshar,The Frenkel-Kontorova Model: Concepts, Methods, Applications (Springer-Verlag, Berlin, 2004)

  6. B.V. Chirikov, Phys. Rep. 52, 263 (1979)

    Article  ADS  Google Scholar 

  7. A.J. Lichtenberg, M.A. Lieberman,Regular and chaotic dynamics (Springer, Berlin, 1992)

  8. J.D. Meiss, Rev. Mod. Phys. 64, 795 (1992)

    Article  ADS  Google Scholar 

  9. B. Chirikov, D. Shepelyansky, Scholarpedia 3, 3550 (2008)

    Article  ADS  Google Scholar 

  10. S. Aubry, Physica D 7, 240 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. O.V. Zhirov, D.L. Shepelyansky, Europhys. Lett. 103, 68008 (2013)

    Article  ADS  Google Scholar 

  12. O.V. Zhirov, J. Lages, D.L. Shepelyansky, Eur. Phys. J. D 73, 149 (2019)

    Article  ADS  Google Scholar 

  13. A.F. Ioffe,Semiconductor thermoelements, and thermoelectric cooling (Infosearch, Ltd, 1957)

  14. A.F. Ioffe, L.S. Stil’bans, Rep. Prog. Phys. 22, 167 (1959)

    Article  ADS  Google Scholar 

  15. A. Majumdar, Science 303, 777 (2004)

    Article  Google Scholar 

  16. H.J. Goldsmid,Introduction to thermoelectricity (Springer, Berlin, 2009)

  17. N. Li, J. Ren, L. Wang, G. Zhang, P. Hanggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012)

    Article  ADS  Google Scholar 

  18. B.G. Levi, Phys. Today 67, 14 (2014)

    ADS  Google Scholar 

  19. J. He, T.M. Tritt, Science 357, eaak9997 (2017)

    Article  Google Scholar 

  20. J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, Nat. Nanotechnol. 8, 471 (2013)

    Article  ADS  Google Scholar 

  21. D.G.-Rees, S.-S. Yeh, B.-C. Lee, K. Kono, J.-J. Lin, Phys. Rev. B 96, 205438 (2017)

    Article  ADS  Google Scholar 

  22. J.-Y. Lin, A.V. Smorodin, A.O. Badrutdinov, D. Konstantinov, J. Low Temp. Phys. 195, 289 (2019)

    Article  ADS  Google Scholar 

  23. T. Pruttivarasin, M. Ramm, I. Talukdar, A. Kreuter, H. Haffner, New J. Phys. 13, 075012 (2011)

    Article  ADS  Google Scholar 

  24. A. Bylinskii, D. Gangloff, V. Vuletic, Science 348, 1115 (2015)

    Article  ADS  Google Scholar 

  25. A. Bylinskii, D. Gangloff, I. Countis, V. Vuletic, Nat. Mater. 11, 717 (2016)

    Article  ADS  Google Scholar 

  26. J. Kiethe, R. Nigmatullin, D. Kalincev, T. Schmirander, T.E. Mehlstaubler, Nat. Commun. 8, 15364 (2017)

    Article  ADS  Google Scholar 

  27. T. Laupretre, R.B. Linnet, I.D. Leroux, H. Landa, A. Dantan, M. Drewsen, Phys. Rev. A 99, 031401(R) (2019)

    Article  ADS  Google Scholar 

  28. T. Brazda, A. Silva, N. Manini, A. Vanossi, R. Guerra, E. Tosatti, C. Bechinger, Phys. Rev. X 8, 011050 (2018)

    Google Scholar 

  29. M.Y. Zakharov, D. Demidov, D.L. Shepelyansky, Phys. Rev. B 99, 155416 (2019)

    Article  ADS  Google Scholar 

  30. S. Lepri, R. Livi, A. Politi, Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  31. K. Ahnert, M. Mulansky, Odeint – solving ordinary differential equations in C++, inIP Conf. Proc. (2011), Vol. 1389, p. 1586

    ADS  Google Scholar 

  32. D. Demidov, K. Ahnert, K. Rupp, P. Gottschling, SIAM J.Sci. Comput. 35, C453 (2013)

    Article  Google Scholar 

  33. D. Demidov, VEXCL, https://github.com/ddemidov/vexcl, Accessed Oct ober (2019)

  34. K. Ahnert, D. Demidov, M. Mulansky, Solving ordinarydifferential equations on GPUs, inNumerical Computations with GPUs, edited by V. Kindratenko (Springer, Berlin, 2014), pp. 125–157

  35. Olympe, CALMIP https://www.calmip.univ-toulouse.fr/spip.php?article582, Accessed Oct (2019)

  36. Yu.P. Monarkham, V.B. Shikin, Sov. Phys. JETP 41, 710 (1976)

    ADS  Google Scholar 

  37. J. Tempere, S.N. Klimin, I.E. Silvera, J.T. Devreese, Eur. Phys. J. B 32, 329 (2003)

    Article  ADS  Google Scholar 

  38. K. Moskovtsev, M.I. Dykman, J. Low Temp. Phys. 195, 266 (2019)

    Article  ADS  Google Scholar 

  39. Y. Machida, X. Lin, W. Kang, K. Izawa, K. Behnia, Phys. Rev. Lett. 116, 087003 (2016)

    Article  ADS  Google Scholar 

  40. V. Narayan, M. Pepper, J. Griffiths, H. Beere, F. Sfigakis, G. Jones, D. Ritchie, A. Ghosh, Phys. Rev. B 86, 125406 (2012)

    Article  ADS  Google Scholar 

  41. Q. Du, M. Abeykoon, Y. Liu, G. Kotliar, C. Petrovic, Phys. Rev. Lett. 123, 076602 (2019)

    Article  ADS  Google Scholar 

  42. N.R. Beysengulov, D.G. Rees, D.G., D.A. Tayurskii, K. Kono, JETP Lett. 104, 323 (2016)

    Article  ADS  Google Scholar 

  43. A. Benassi, A. Vanossi, E. Tosatti, Nat. Commun. 2, 236 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dima L. Shepelyansky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, M.Y., Demidov, D. & Shepelyansky, D.L. Thermoelectric properties of Wigner crystal in two-dimensional periodic potential. Eur. Phys. J. B 93, 31 (2020). https://doi.org/10.1140/epjb/e2020-100525-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-100525-8

Keywords

Navigation