Skip to main content

Advertisement

Log in

First-principles study of structural stability, electronic properties and lattice thermal conductivity of KAgX (X = S, Se, Te)

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The present study is the first attempt towards establishing computational insights into the structural, electronic, mechanical, dynamical and thermal properties of the tetragonal phases of potassium chalcoargentates (KAgX). We find that the lattice thermal conductivity of KAgX is anisotropic, with values of 0.553 (0.279), 0.509 (0.369) and 0.221 (0.125) Wm−1K−1 at room temperature (300 K) along the a-axis (c-axis) for KAgS, KAgSe and KAgTe, respectively. The calculated values of the lattice thermal conductivity are very small, especially along the c-axis. This highlights the potential of using KAgX in designing thermoelectric materials, since low lattice thermal conductivity is a requisite for maximizing the dimensionless figure of merit which defines the efficiency of a system in converting thermal to electrical energy and vice versa.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Chung, M.G. Kanatzidis, Chem. Mater. 26, 849 (2013)

    Article  Google Scholar 

  2. I. Chung et al., J. Am. Chem. Soc. 129, 14996 (2007)

    Article  Google Scholar 

  3. O. Palchik et al., Inorg. Chem. 44, 4151 (2005)

    Article  Google Scholar 

  4. G. Savelsberg, H. Schäfer, J. Less-Common Met. 80, 59 (1981)

    Article  Google Scholar 

  5. J. Liao et al., J. Am. Chem. Soc. 125, 9484 (2003)

    Article  Google Scholar 

  6. B. Davaasuren, E. Dashjav, A. Rothenberger, Z. Anorg. Allg. Chem. 640, 2939 (2014)

    Article  Google Scholar 

  7. K.-W. Kim, H. Kim, Z. Kristallogr. NCS 223, 719 (2018)

    Google Scholar 

  8. M.J.D. Vermeer et al., J. Am. Chem. Soc. 137, 11383 (2015)

    Article  Google Scholar 

  9. L.D. Zhao et al., Nature 508, 373 (2014)

    Article  ADS  Google Scholar 

  10. K. Feng et al., Dalton Trans. 42, 13635 (2013)

    Article  Google Scholar 

  11. C. Chiritescu et al., Science 315, 351 (2007)

    Article  ADS  Google Scholar 

  12. A. Jain et al., APL Mater. 1, 011002 (2013)

    Article  ADS  Google Scholar 

  13. Q. Wang et al., Appl. Mater. Interfaces 48, 41670 (2018)

    Article  Google Scholar 

  14. H. Ma et al., J. Alloys Compd. 739, 35 (2018)

    Article  Google Scholar 

  15. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  16. J. Carrete et al., Phys. Rev. X 4, 011019 (2014)

    Google Scholar 

  17. D.T. Morelli, J.P. Heremans, G.A. Slack, Phys. Rev. B 66, 195304 (2002)

    Article  ADS  Google Scholar 

  18. M. Palmer et al., Phys. Rev. B 56, 9431 (1997)

    Article  ADS  Google Scholar 

  19. Y. Zhang et al., Phys. Rev. B 85, 054306 (2012)

    Article  ADS  Google Scholar 

  20. S. Curtarolo et al., Comput. Mater. Sci. 58, 227 (2012)

    Article  Google Scholar 

  21. H. Kohn, Teach. Coll. Rec. 65, 706 (1964)

    Google Scholar 

  22. C. Fiolhais, F. Nogueira, A.M Marques, in A Primer in Density Functional Theory (Springer Science & Business Media, Springer-Verlag, Berlin, 2003), p. 620

  23. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  24. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  25. J.P. Perdew et al., Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  26. P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994)

    Article  ADS  Google Scholar 

  27. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  28. A. Togo, I. Tanaka, Scr. Mater. 108, 1 (2015)

    Article  Google Scholar 

  29. A. Togo, L. Chaput, I. Tanaka, Phys. Rev. B 91, 094306 (2015)

    Article  ADS  Google Scholar 

  30. F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)

    Article  ADS  Google Scholar 

  31. R. Hill, J. Mech. Phys. Solids 11, 357 (1963)

    Article  ADS  Google Scholar 

  32. F. Mouhat, F.-X. Coudert, Phys. Rev. B 90, 224104 (2014)

    Article  ADS  Google Scholar 

  33. J. Haines, J.M. Leger, G. Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001)

    Article  ADS  Google Scholar 

  34. F. Drymiotis et al., Phys. Rev. Lett. 93, 025502 (2004)

    Article  ADS  Google Scholar 

  35. L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)

    Article  ADS  Google Scholar 

  36. A. Kushwaha et al., Indian J. Pure Appl. Phys. (IJPAP) 53, 585 (2015)

    Google Scholar 

  37. S.J. Kang et al., J. Alloys Compd. 583, 295 (2014)

    Article  Google Scholar 

  38. K. Efthimios, Atomic and Electronic Structure of Solids (Cambridge University Press, England, 2003)

  39. C.J. Cramer, F.M. Bickelhaupt, Angew. Chem. Int. Ed. 42, 381 (2003)

    Google Scholar 

  40. D.J. Singh, Phy. Rev. B 82, 205102 (2010)

    Article  ADS  Google Scholar 

  41. C. Kittel, in Introduction to Solid State Physics (Wiley, New York, 1996), p. 8

  42. M. Mahmoud, D. Joubert, Mater. Today Proc. 5, 10424 (2018)

    Article  Google Scholar 

  43. W. Li, N. Mingo, Phys. Rev. B 91, 144303 (2015)

    Article  ADS  Google Scholar 

  44. P.F. Qiu et al., J. Appl. Phys. 109, 063713 (2011)

    Article  ADS  Google Scholar 

  45. N.L. Vocadlo, G.D. Price, Phys. Earth Planet. Inter. 82, 261 (1994)

    Article  ADS  Google Scholar 

  46. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1979)

  47. G.A. Slack, J. Phys. Chem. Solids 34, 321 (1973)

    Article  ADS  Google Scholar 

  48. J. Tiantian, C. Gang, Z. Yongsheng, Phys. Rev. B 95, 155206 (2017)

    Article  Google Scholar 

  49. G.P. Srivastava, The Physics of Phonons (CRC Press, New York, 1990)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud M. A. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, M.M.A., Rugut, E.K., Molepo, M.P. et al. First-principles study of structural stability, electronic properties and lattice thermal conductivity of KAgX (X = S, Se, Te). Eur. Phys. J. B 92, 87 (2019). https://doi.org/10.1140/epjb/e2019-90664-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90664-2

Keywords

Navigation