Skip to main content
Log in

Electrostatic chameleons: theory of intelligent metashells with adaptive response to inside objects

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The remarkable capability to tailor material property has largely expanded the permittivity range, even with negative value. However, permittivity, as an inherent property, may lack adaptive response to nearby objects. To solve this problem, here we introduce the chameleon behavior from biology to electrostatics. The essence of electrostatic chameleons can be concluded as intelligent metashells with adaptive response to inside objects. The requirement of electrostatic chameleons is deduced by making the effective permittivities of metashells only dependent on the permittivities of inside objects. By delicately designing the anisotropic permittivities of metashells, we summarize two types of electrostatic chameleons with distinct mechanisms. The theoretical analyses are validated by numerical simulations, which indicate that the proposed metashells do work as expected. Such schemes have potential applications in camouflage, self-adaption, etc. This work not only lays the theoretical foundation for electrostatic chameleons, but also provides guidance for exploring other intelligent materials beyond chameleon.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996)

    Article  ADS  Google Scholar 

  2. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Micro. Theory 47, 2075 (1999)

    Article  Google Scholar 

  3. D.R. Smith, N. Kroll, Phys. Rev. Lett. 85, 2933 (2000)

    Article  ADS  Google Scholar 

  4. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  5. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  6. J. Li, L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. Lett. 90, 083901 (2003)

    Article  ADS  Google Scholar 

  7. J. Valentine, S. Zhang, T. Zentgraf, E.U. Avila, D.A. Genov, G. Bartal, X. Zhang, Nature 455, 376 (2008)

    Article  ADS  Google Scholar 

  8. L.H. Gao, Q. Cheng, J. Yang, S.J. Ma, J. Zhao, S. Liu, H.B. Chen, Q. He, W.X. Jiang, H.F. Ma, Q.Y. Wen, L.J. Liang, B.B. Jin, W.W. Liu, L. Zhou, J.Q. Yao, P.H. Wu, T.J. Cui, Light Sci. Appl. 4, e324 (2015)

    Article  Google Scholar 

  9. T.J. Cui, S. Liu, L.L. Li, Light Sci. Appl. 5, e16172 (2016)

    Article  Google Scholar 

  10. R.G. Peng, Z.Q. Xiao, Q. Zhao, F.L. Zhang, Y.G. Meng, B. Li, J. Zhou, Y.C. Fan, P. Zhang, N.H. Shen, T. Koschny, C.M. Soukoulis, Phys. Rev. X 7, 011033 (2017)

    Google Scholar 

  11. W.X. Jiang, C.Y. Luo, S. Ge, C.W. Qiu, T.J. Cui, Adv. Mater. 27, 4628 (2015)

    Article  Google Scholar 

  12. T.C. Han, Y.X. Liu, L. Liu, J. Qin, Y. Li, J.Y. Bao, D.Y. Ni, C.W. Qiu, Sci. Rep. 8, 12208 (2018)

    Article  ADS  Google Scholar 

  13. T.Z. Yang, X. Bai, D.L. Gao, L.Z. Wu, B.W. Li, J.T.L. Thong, C.W. Qiu, Adv. Mater. 27, 7752 (2015)

    Article  Google Scholar 

  14. R. Mach-Batlle, C. Navau, A. Sancheza, Appl. Phys. Lett. 112, 162406 (2018)

    Article  ADS  Google Scholar 

  15. N.A. Nicorovici, R.C. Mcphedran, G.W. Milton, Phys. Rev. B 49, 8479 (1994)

    Article  ADS  Google Scholar 

  16. O. Levy, J. Appl. Phys. 77, 1696 (1995)

    Article  ADS  Google Scholar 

  17. P.M. Hui, C. Xu, D. Stroud, Phys. Rev. B 69, 014203 (2004)

    Article  ADS  Google Scholar 

  18. J.P. Huang, K.W. Yu, Phys. Rep. 431, 87 (2006)

    Article  ADS  Google Scholar 

  19. D.H. Liu, C. Xu, P.M. Hui, Appl. Phys. Lett. 92, 181901 (2008)

    Article  ADS  Google Scholar 

  20. S.Y. Park, D. Stroud, Appl. Phys. Lett. 85, 2920 (2004)

    Article  ADS  Google Scholar 

  21. S.Y. Park, D. Stroud, Phys. Rev. Lett. 94, 217401 (2005)

    Article  ADS  Google Scholar 

  22. A. Alu, N. Engheta, Phys. Rev. E 72, 016623 (2005)

    Article  ADS  Google Scholar 

  23. V. Levin, M. Markova, A. Mousatov, E. Kazatchenko, E. Pervago, Eur. Phys. J. B 90, 192 (2017)

    Article  ADS  Google Scholar 

  24. H.R. Ma, B.S. Zhang, W.Y. Tam, P. Sheng, Phys. Rev. B 61, 962 (2000)

    Article  ADS  Google Scholar 

  25. Y.L. Geng, X.B. Wu, L.W. Li, B.R. Guan, Phys. Rev. E 70, 056609 (2004)

    Article  ADS  Google Scholar 

  26. C.W. Qiu, L.W. Li, T.S. Yeo, S. Zouhdi, Phys. Rev. E 76, 039903 (2007)

    Article  ADS  Google Scholar 

  27. G.Q. Gu, E.B. Wei, Y.M. Poon, F.G. Shin, Phys. Rev. B 76, 064203 (2007)

    Article  ADS  Google Scholar 

  28. M. Cristea E.C. Niculescu, Eur. Phys. J. B 85, 191 (2012)

    Article  ADS  Google Scholar 

  29. C. Navau, J. Prat-Camps, O. Romero-Isart, J.I. Cirac, A. Sanchez, Phys. Rev. Lett. 112, 253901 (2014)

    Article  ADS  Google Scholar 

  30. J.F. Zhu, W. Jiang, Y.C. Liu, G. Yin, J. Yuan, S.L. He, Y.G. Ma, Nat. Commun. 6, 8931 (2015)

    Article  ADS  Google Scholar 

  31. R.M. Batlle, A. Parra, S. Laut, N.D. Valle, C. Navau, A. Sanchez, Phys. Rev. Appl. 9, 034007 (2018)

    Article  ADS  Google Scholar 

  32. J.C. Maxwell Garnett, Philos. Trans. R. Soc. London Ser. A 203, 385 (1904)

    Article  ADS  Google Scholar 

  33. D.A.G. Bruggeman, Ann. Phys. (Leipzig) 24, 636 (1935)

    Article  ADS  Google Scholar 

  34. F. Gomory, M. Solovyov, J. Souc, C. Navau, J.P. Camps, A. Sanchez, Science 335, 1466 (2012)

    Article  ADS  Google Scholar 

  35. W. Jiang, Y.G. Ma, S.L. He, Phys. Rev. Appl. 9, 054041 (2018)

    Article  ADS  Google Scholar 

  36. Y. Lai, J. Ng, H.Y. Chen, D.Z. Han, J.J. Xiao, Z.Q. Zhang, C.T. Chan, Phys. Rev. Lett. 102, 253902 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Huang, J. Electrostatic chameleons: theory of intelligent metashells with adaptive response to inside objects. Eur. Phys. J. B 92, 53 (2019). https://doi.org/10.1140/epjb/e2019-90656-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-90656-2

Keywords

Navigation