Skip to main content
Log in

Piezoelectric properties of Ga2O3: a first-principle study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The compounds exhibit piezoelectricity, which demands to break inversion symmetry, and then to be a semiconductor. For Ga2O3, the orthorhombic case (ϵ-Ga2O3) of common five phases breaks inversion symmetry. Here, the piezoelectric tensor of ϵ-Ga2O3 is reported by using density functional perturbation theory (DFPT). To confirm semiconducting property of ϵ-Ga2O3, its electronic structures are studied by using generalized gradient approximation (GGA) and Tran and Blaha’s modified Becke and Johnson (mBJ) exchange potential. The gap value of 4.66 eV is predicted with mBJ method, along with the effective mass tensor for electron at the conduction band minimum (CBM) [about 0.24 m0]. The mBJ gap is very close to the available experimental value. The elastic tensor Cij are calculated by using the finite difference method (FDM), and piezoelectric stress tensor eij are attained by DFPT, and then piezoelectric strain tensor dij are calculated from Cij and eij. In this process, average mechanical properties of ϵ-Ga2O3 are estimated, such as bulk modulus, Shear modulus, Young’s modulus and so on. The calculated dij are comparable and even higher than commonly used piezoelectric materials such as α-quartz, ZnO, AlN and GaN.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Pearton, J.C. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, Appl. Phys. Rev. 5, 011301 (2018)

    Article  ADS  Google Scholar 

  2. S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, I. Tanaka, J. Phys.: Condens. Matter 19, 346211 (2007)

    Google Scholar 

  3. S.J. Pearton, F. Ren, M. Tadjer, J. Kim, J. Appl. Phys. 124, 220901 (2018)

    Article  Google Scholar 

  4. N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Appl. Phys. Lett. 70, 3561 (1997)

    Article  ADS  Google Scholar 

  5. M. Orita, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 77, 4166 (2000)

    Article  ADS  Google Scholar 

  6. F. Ricci, F. Boschi, A. Baraldi, A. Filippetti, M. Higashiwaki, A. Kuramata, V. Fiorentini, R. Fornari, J. Phys.: Condens. Matter 28, 224005 (2016)

    ADS  Google Scholar 

  7. K.A. Cook-Chennault, N. Thambi, A.M. Sastry, Smart Mater. Struct. 17, 043001 (2008)

    Article  ADS  Google Scholar 

  8. F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. Lett. 79, 3958 (1997)

    Article  ADS  Google Scholar 

  9. Z.L. Wang, Adv. Mater. 24, 4632 (2012)

    Article  Google Scholar 

  10. C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang, Nat. Photonics 7, 752 (2013)

    Article  ADS  Google Scholar 

  11. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z.L. Wang, Nat. Nanotechnol. 5, 366 (2010)

    Article  ADS  Google Scholar 

  12. M.B. Maccioni, V. Fiorentini, Appl. Phys. Express 9, 041102 (2016)

    Article  ADS  Google Scholar 

  13. J. Furthmüller, F. Bechstedt, Phys. Rev. B 93, 115204 (2016)

    Article  ADS  Google Scholar 

  14. J. Kim, D. Tahara, Y. Miura, B.G. Kim, Appl. Phys. Express 11, 061101 (2018)

    Article  ADS  Google Scholar 

  15. M. Mulazzi, F. Reichmann, A. Becker, W.M. Klesse, P. Alippi, V. Fiorentini, A. Parisini, M. Bosi, R. Fornari, APL Mater. 7, 022522 (2019)

    Article  ADS  Google Scholar 

  16. M. Pavesi, F. Fabbri, F. Boschi, G. Piacentini, A. Baraldi, M. Bosi, E. Gombia, A. Parisini, R. Fornari, Mater. Chem. Phys. 205, 502 (2018)

    Article  Google Scholar 

  17. K. Shimada, Mater. Res. Express 5, 036502 (2018)

    Article  ADS  Google Scholar 

  18. L. Bornstein, inGroup III: Solid State Physics, Low Frequency Properties of Dielectric Crystals: Piezoelectric, Pyroelectric and Related Constants (Springer, Berlin, 1993), pp. 330–332

  19. K. Tsubouchi, N. Mikoshiba, IEEE Trans. Sonics Ultrason. SU-32, 634 (1985)

    Article  ADS  Google Scholar 

  20. C.M. Lueng, H.L. Chang, C. Suya, C.L. Choy, J. Appl. Phys. 88, 5360 (2000)

    Article  ADS  Google Scholar 

  21. A. Hangleiter, F. Hitzel, S. Lahmann, U. Rossow, Appl. Phys. Lett. 83, 1169 (2003)

    Article  ADS  Google Scholar 

  22. S. Muensit, E.M. Goldys, I.L. Guy, Appl. Phys. Lett. 75, 3965 (1999)

    Article  ADS  Google Scholar 

  23. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  Google Scholar 

  24. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  ADS  Google Scholar 

  25. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz,WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz Technische Universität Wien, Austria, 2001), ISBN 3-9501031-1-2

  26. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  28. X. Wu, D. Vanderbilt, D.R. Hamann, Phys. Rev. B 72, 035105 (2005)

    Article  ADS  Google Scholar 

  29. G. Kresse, J. Non-Cryst. Solids 193, 222 (1995)

    Article  ADS  Google Scholar 

  30. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  31. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  32. F. Mouhat, F.X. Coudert, Phys. Rev. B 90, 224104 (2014)

    Article  ADS  Google Scholar 

  33. R. Bechmann, Phys. Rev. 110, 1060 (1958)

    Article  ADS  Google Scholar 

  34. K. Shimada, Jpn. J. Appl. Phys. 45, L358 (2006)

    Article  ADS  Google Scholar 

  35. M. Cattia, Y. Noel, R. Dovesi, J. Phys. Chem. Solids 64, 2183 (2003)

    Article  ADS  Google Scholar 

  36. F. Bernardini, V. Fiorentini, Appl. Phys. Lett. 80, 4145 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hui-Min Du and San-Dong Guo designed the study and analysed data. San-Dong Guo collected data, plotted graphs and wrote the manuscript.

Corresponding author

Correspondence to San-Dong Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, SD., Du, HM. Piezoelectric properties of Ga2O3: a first-principle study. Eur. Phys. J. B 93, 7 (2020). https://doi.org/10.1140/epjb/e2019-100516-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100516-6

Keywords

Navigation