Skip to main content
Log in

Dynamics of disordered quantum systems using flow equations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this manuscript, we show how flow equation methods can be used to study localisation in disordered quantum systems, and particularly how to use this approach to obtain the non-equilibrium dynamical evolution of observables. We review the formalism, based on continuous unitary transforms, and apply it to a non-interacting yet non trivial one-dimensional disordered quantum system, the Power-Law Random Banded Matrix model whose dynamics is studied across the localisation-delocalisation transition. We show how this method can be used to compute quench dynamics of simple observables, demonstrate how this formalism provides a natural framework to understand operator spreading and show how to construct complex objects such as correlation functions. We also discuss how the method may be applied to interacting quantum systems, and end with an outlook on unsolved problems and ways in which the method can be further developed in the future. Our goal is to motivate further adoption of the flow equation method, and to equip and encourage others to build on this technique as a means to study localisation phenomena in disordered quantum systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    ADS  Google Scholar 

  2. F. Evers, A.D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)

    ADS  Google Scholar 

  3. I.V. Gornyi, A.D. Mirlin, D.G. Polyakov, Phys. Rev. Lett. 95, 206603 (2005)

    ADS  Google Scholar 

  4. D.M. Basko, I.L. Aleiner, B.L. Altshuler, Ann. Phys. 321, 1126 (2006)

    ADS  Google Scholar 

  5. V. Oganesyan, D.A. Huse, Phys. Rev. B 75, 155111 (2007)

    ADS  Google Scholar 

  6. A. Pal, D.A. Huse, Phys. Rev. B 82, 174411 (2010)

    ADS  Google Scholar 

  7. J.Z. Imbrie, J. Stat. Phys. 163, 998 (2016)

    ADS  MathSciNet  Google Scholar 

  8. J.Z Imbrie, V. Ros, A. Scardicchio, Ann. Phys. 529, 1600278 (2017)

    Google Scholar 

  9. E. Altman, R. Vosk, Annu. Rev. Condens. Matter Phys. 6, 383 (2015)

    ADS  Google Scholar 

  10. R. Nandkishore, D.A Huse, Annu. Rev. Condens. Matter Phys. 6, 15 (2015)

    ADS  Google Scholar 

  11. F. Alet, N. Laflorencie, C. R. Phys. 19, 498 (2018)

    ADS  Google Scholar 

  12. D.A. Abanin, E. Altman, I. Bloch, M. Serbyn, Rev. Mod. Phys. 91, 021001 (2019)

    ADS  Google Scholar 

  13. M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989)

    ADS  Google Scholar 

  14. L.F. Cugliandolo, G. Lozano, Phys. Rev. Lett. 80, 4979 (1998)

    ADS  Google Scholar 

  15. L.F. Cugliandolo, G. Lozano, Phys. Rev. B 59, 915 (1999)

    ADS  Google Scholar 

  16. L.F. Cugliandolo, D.R. Grempel, C.A. da Silva Santos, Phys. Rev. B 64, 014403 (2001)

    ADS  Google Scholar 

  17. G. Biroli, L.F. Cugliandolo, Phys. Rev. B 64, 014206 (2001)

    ADS  Google Scholar 

  18. G. Biroli, O. Parcollet, Phys. Rev. B 65, 094414 (2002)

    ADS  Google Scholar 

  19. D.A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, S.L. Sondhi, Phys. Rev. B 88, 014206 (2013)

    ADS  Google Scholar 

  20. P. Ponte, Z. Papić, F. Huveneers, D.A. Abanin, Phys. Rev. Lett. 114, 140401 (2015)

    ADS  Google Scholar 

  21. F. Wilczek, Phys. Rev. Lett. 109, 160401 (2012)

    ADS  Google Scholar 

  22. V. Khemani, A. Lazarides, R. Moessner, S.L. Sondhi, Phys. Rev. Lett. 116, 250401 (2016)

    ADS  Google Scholar 

  23. D.V. Else, B. Bauer, C. Nayak, Phys. Rev. Lett. 117, 090402 (2016)

    ADS  Google Scholar 

  24. J. Zhang, P.W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.D. Potirniche, A.C. Potter, A. Vishwanath, N.Y. Yao, C. Monroe, Nature 543, 217 (2017)

    ADS  Google Scholar 

  25. S. Choi, J. Choi, R. Landig, G. Kucsko, H. Zhou, J. Isoya, F. Jelezko, S. Onoda, H. Sumiya, V. Khemani, C. von Keyserlingk, N.Y. Yao, E. Demler, M.D. Lukin, Nature 543, 221 (2017)

    ADS  Google Scholar 

  26. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, A. Aspect, Nature 453, 891 (2008)

    ADS  Google Scholar 

  27. S.S. Kondov, W.R. McGehee, W. Xu, B. DeMarco, Phys. Rev. Lett. 114, 083002 (2015)

    ADS  Google Scholar 

  28. J.Y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D.A. Huse, I. Bloch, C. Gross, Science 352, 1547 (2016)

    ADS  MathSciNet  Google Scholar 

  29. J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P.W. Hess, P. Hauke, M. Heyl, D.A. Huse, C. Monroe, Nat. Phys. 12, 907 (2016)

    Google Scholar 

  30. V.L. Quito, P. Titum, D. Pekker, G. Refael, Phys. Rev. B 94, 104202 (2016)

    ADS  Google Scholar 

  31. D. Pekker, B.K Clark, V. Oganesyan, G. Refael, Phys. Rev. Lett. 119, 075701 (2017)

    ADS  Google Scholar 

  32. S. Savitz, G. Refael, Phys. Rev. B 96, 115129 (2017)

    ADS  Google Scholar 

  33. S.J. Thomson, M. Schiró, Phys. Rev. B 97, 060201 (2018)

    ADS  Google Scholar 

  34. S.P. Kelly, R. Nandkishore, J. Marino, Exploring many-body localisation in open quantum systems via wegner-wilson flows, https://arXiv:1902.11295 (2019)

  35. X. You, D. Pekker, B.K. Clark, Bulk geometry of the many body localized phase from wilson-wegner flow, https://arXiv:1909.11097 (2019)

  36. S. Savitz, C. Peng, G. Refael, Phys. Rev. B 100, 094201 (2019)

    ADS  Google Scholar 

  37. S. Kehrein, inThe flow equation approach to many-particle systems (Springer, 2007), Vol. 217

  38. L.S. Levitov, Phys. Rev. Lett. 64, 547 (1990)

    ADS  MathSciNet  Google Scholar 

  39. A.D. Mirlin, Y.V. Fyodorov, F.-M. Dittes, J. Quezada, T.H. Seligman, Phys. Rev. E 54, 3221 (1996)

    ADS  Google Scholar 

  40. L.S. Levitov, Ann. Phys. 8, 697 (1999)

    Google Scholar 

  41. A. Nahum, S. Vijay, J. Haah, Phys. Rev. X 8, 021014 (2018)

    Google Scholar 

  42. V. Khemani, A. Vishwanath, D.A. Huse, Phys. Rev. X 8, 031057 (2018)

    Google Scholar 

  43. S. Gopalakrishnan, D.A. Huse, V. Khemani, R. Vasseur, Phys. Rev. B 98, 220303 (2018)

    ADS  Google Scholar 

  44. S.D. Głazek, K.G. Wilson, Phys. Rev. D 48, 5863 (1993)

    ADS  Google Scholar 

  45. S.D. Glazek, K.G. Wilson, Phys. Rev. D 49, 4214 (1994)

    ADS  Google Scholar 

  46. F. Wegner, Ann. Phys. 506, 77 (1994)

    Google Scholar 

  47. R.W. Brockett, Linear Algebra Appl. 146, 79 (1991)

    MathSciNet  Google Scholar 

  48. M.T. Chu, K.R. Driessel, SIAM J. Numer. Anal. 27, 1050 (1990)

    ADS  MathSciNet  Google Scholar 

  49. M.T. Chu, Fields Inst. Commun. 3, 87 (1994)

    Google Scholar 

  50. F. Wegner, J. Phys. A 39, 8221 (2006)

    ADS  MathSciNet  Google Scholar 

  51. C. Monthus, J. Phys. A 49, 305002 (2016)

    ADS  MathSciNet  Google Scholar 

  52. M. Moeckel, S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008)

    ADS  Google Scholar 

  53. A. Hackl, S. Kehrein, Phys. Rev. B 78, 092303 (2008)

    ADS  Google Scholar 

  54. A. Hackl, S. Kehrein, J. Phys.: Condens. Matter 21, 015601 (2009)

    ADS  Google Scholar 

  55. I. Varga, D. Braun, Phys. Rev. B 61, R11859 (2000)

    ADS  Google Scholar 

  56. A.D. Mirlin, F. Evers, Phys. Rev. B 62, 7920 (2000)

    ADS  Google Scholar 

  57. F. Evers, A.D. Mirlin, Phys. Rev. Lett. 84, 3690 (2000)

    ADS  Google Scholar 

  58. E. Cuevas, M. Ortuno, V. Gasparian, A. Perez-Garrido, Phys. Rev. Lett. 88, 016401 (2001)

    ADS  Google Scholar 

  59. V.E. Kravtsov, O. Yevtushenko, E. Cuevas, J. Phys. A 39, 2021 (2006)

    ADS  MathSciNet  Google Scholar 

  60. V.E. Kravtsov,Lecture notes on Random Matrix Theory (2009)

  61. C. Yeung, Y. Oono, Europhys. Lett. 4, 1061 (1987)

    ADS  Google Scholar 

  62. M.C. Tran, A. Ehrenberg, A.Y. Guo, P. Titum, D.A. Abanin, A.V. Gorshkov, Phys. Rev. A 100, 052103 (2019)

    ADS  Google Scholar 

  63. N. Roy, A, Sharma, Phys. Rev. B 97, 125116 (2018)

    ADS  Google Scholar 

  64. D.J. Luitz, Y. Bar Lev, Phys. Rev. A 99, 010105 (2019)

    ADS  Google Scholar 

  65. X. Chen, T. Zhou, Phys. Rev. B 100, 064305 (2019)

    ADS  Google Scholar 

  66. S.J. Thomson, D. Magano, M. Schiró, In preparation, 2019

  67. S.J. Thomson, M. Schiró, In preparation, 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Thomson.

Additional information

Contribution to the Topical Issue “Recent Advances in the Theory of Disordered Systems”, edited by Ferenc Iglói and Heiko Rieger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomson, S.J., Schiró, M. Dynamics of disordered quantum systems using flow equations. Eur. Phys. J. B 93, 22 (2020). https://doi.org/10.1140/epjb/e2019-100476-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100476-3

Navigation