Skip to main content
Log in

Stability of delocalized nonlinear vibrational modes in graphene lattice

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Crystal lattices support delocalized nonlinear vibrational modes (DNVMs), which are determined solely by the lattice point symmetry, and are exact solutions of the equations of atomic motion for any interatomic potential. DNVMs are interesting for a number of reasons. In particular, DNVM instability can result in the formation of localized vibrational modes concentrating a significant part of the lattice energy. In some cases, localized vibrational modes can be obtained by imposing localizing functions upon DNVM. In this regard, stability of DNVMs is an important issue. In this paper, molecular dynamics is employed to address stability of all four delocalized modes in a graphene lattice in the presence of small perturbations both in the plane and normal to the plane of the lattice. When DNVM amplitude is above the stability threshold, atom trajectories deviate from the mode pattern exponentially in time. Critical exponents are calculated for the in- and out-of-plane displacements. Stability threshold amplitudes are established. Interestingly, in three of the studied DNVMs the in-plane displacements diverge faster, but in one of them the instability develops through the out-of-plane displacements. This result can be explained by the difference in atomic vibration patterns of DNVMs. Reported results refine our understanding of the nonlinear dynamics of graphene lattice and can be useful in the design of electro-mechanical resonators and sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    ADS  Google Scholar 

  2. D. Akinwande et al., Extreme Mech. Lett. 13, 42 (2017)

    Google Scholar 

  3. Q. Bao, K.P. Loh, ACS Nano 6, 3677 (2012)

    Google Scholar 

  4. T. Miao, S. Yeom, P. Wang, B. Standley, M. Bockrath, Nano Lett. 14, 2982 (2014)

    ADS  Google Scholar 

  5. R.J. Dolleman, S. Houri, A. Chandrashekar, F. Alijani, H.S.J. Van Der Zant, P.G. Steeneken, Sci. Rep. 8, 9366 (2018)

    ADS  Google Scholar 

  6. R.J. Dolleman, P. Belardinelli, S. Houri, H.S.J. Van Der Zant, F. Alijani, P.G. Steeneken, Nano Lett. 19, 1282 (2019)

    ADS  Google Scholar 

  7. B. Sajadi, F. Alijani, D. Davidovikj, J. Goosen, P.G. Steeneken, F. Van Keulen, J. Appl. Phys. 122, 234302 (2017)

    ADS  Google Scholar 

  8. B. Sajadi, S. Wahls, S.V. Hemert, P. Belardinelli, P.G. Steeneken, F. Alijani, J. Mech. Phys. Solids 122, 161 (2019)

    ADS  MathSciNet  Google Scholar 

  9. D. Midtvedt, A. Isacsson, A. Croy, Nat. Commun. 5, 4838 (2014)

    ADS  Google Scholar 

  10. S. Singh, B.P. Patel, Eur. J. Mech. A Solids 59, 165 (2016)

    ADS  MathSciNet  Google Scholar 

  11. S.O. Gajbhiye, S.P. Singh, Appl. Phys. A 122, 523 (2016)

    ADS  Google Scholar 

  12. A.V. Savin, E.A. Korznikova, S.V. Dmitriev, Phys. Rev. B 99, 235411 (2019)

    ADS  Google Scholar 

  13. A.V. Savin, E.A. Korznikova, S.V. Dmitriev, Phys. Rev. B 92, 035412 (2015)

    ADS  Google Scholar 

  14. E.A. Korznikova, S.V. Dmitriev, J. Phys. D: Appl. Phys. 47, 345307 (2014)

    Google Scholar 

  15. D. Ru, C. Zhu, S. Dong, J. Zhao, Mech. Mater. 137, 103144 (2019)

    Google Scholar 

  16. I. Evazzade, I.P. Lobzenko, D. Saadatmand, E.A. Korznikova, K. Zhou, B. Liu, S.V. Dmitriev, Nanotechnology 29, 215704 (2018)

    ADS  Google Scholar 

  17. Y. Yamayose, Y. Kinoshita, Y. Doi, A. Nakatani, T. Kitamura, Europhys. Lett. 80, 40008 (2007)

    ADS  Google Scholar 

  18. Y. Doi, A. Nakatani, Procedia Eng. 10, 3393 (2011)

    Google Scholar 

  19. L.Z. Khadeeva, S.V. Dmitriev, Y.S. Kivshar, JETP Lett. 94, 539 (2011)

    ADS  Google Scholar 

  20. E.A. Korznikova, A.V. Savin, Y.A. Baimova, S.V. Dmitriev, R.R. Mulyukov, JETP Lett. 96, 222 (2012)

    ADS  Google Scholar 

  21. E.A. Korznikova, J.A. Baimova, S.V. Dmitriev, Europhys. Lett. 102, 60004 (2013)

    ADS  Google Scholar 

  22. V. Hizhnyakov, M. Klopov, A. Shelkan, Phys. Lett. A 380, 1075 (2016)

    ADS  Google Scholar 

  23. I.P. Lobzenko, G.M. Chechin, G.S. Bezuglova, Y.A. Baimova, E.A. Korznikova, S.V. Dmitriev, Phys. Solid State 58, 633 (2016)

    ADS  Google Scholar 

  24. E. Barani, I.P. Lobzenko, E.A. Korznikova, E.G. Soboleva, S.V. Dmitriev, K. Zhou, A.M. Marjaneh, Eur. Phys. J. B 90, 38 (2017)

    ADS  Google Scholar 

  25. E. Barani, E.A. Korznikova, A.P. Chetverikov, K. Zhou, S.V. Dmitriev, Phys. Lett. A 381, 3553 (2017)

    ADS  Google Scholar 

  26. J.A. Baimova, E.A. Korznikova, I.P. Lobzenko, S.V. Dmitriev, Rev. Adv. Mater. Sci. 42, 68 (2015)

    Google Scholar 

  27. S.V. Dmitriev, E.A. Korznikova, Y.A. Baimova, M.G. Velarde, Phys.-Uspekhi 59, 446 (2016)

    ADS  Google Scholar 

  28. I. Evazzade, I.P. Lobzenko, E.A. Korznikova, I.A. Ovid’ko, M.R. Roknabadi, S.V. Dmitriev, Phys. Rev. B 95, 035423 (2017)

    ADS  Google Scholar 

  29. A.V. Savin, Y.S. Kivshar, Europhys. Lett. 89, 46001 (2010)

    ADS  Google Scholar 

  30. G.M. Chechin, V.P. Sakhnenko, Physica D 117, 43 (1998)

    ADS  MathSciNet  Google Scholar 

  31. G.M. Chechin, D.S. Ryabov, S.A. Shcherbinin, Phys. Rev. E 92, 012907 (2015)

    ADS  Google Scholar 

  32. G.M. Chechin, S.A. Shcherbinin, Commun. Nonlinear Sci. Numer. Simul. 22, 244 (2015)

    ADS  Google Scholar 

  33. G.M. Chechin, D.S. Ryabov, S.A. Shcherbinin, Lett. Mater. 6, 9 (2016)

    Google Scholar 

  34. V.M. Burlakov, S.A. Kiselev, V.I. Rupasov, Phys. Lett. A 147, 130 (1990)

    ADS  Google Scholar 

  35. V.M. Burlakov, S.A. Kiselev, V.I. Rupasov, J. Exp. Theor. Phys. Lett. 51, 544 (1990)

    Google Scholar 

  36. T. Cretegny, T. Dauxois, S. Ruffo, A. Torcini, Physica D 121, 109 (1998)

    ADS  Google Scholar 

  37. T. Dauxois, R. Khomeriki, F. Piazza, S. Ruffo, Chaos 15, 015110 (2005)

    ADS  MathSciNet  Google Scholar 

  38. E.A. Korznikova, D.V. Bachurin, S.Y. Fomin, A.P. Chetverikov, S.V. Dmitriev, Eur. Phys. J. B 90, 23 (2017)

    ADS  Google Scholar 

  39. S.V. Dmitriev, E.A. Korznikova, D.I. Bokij, K. Zhou, Phys. Status Solidi B 253, 1310 (2016)

    ADS  Google Scholar 

  40. E.A. Korznikova, S.A. Shcherbinin, D.S. Ryabov, G.M. Chechin, E.G. Ekomasov, E.G. Soboleva, E. Barani, K. Zhou, S.V. Dmitriev, Phys. Status Solidi B 256, 1800061 (2019)

    ADS  Google Scholar 

  41. A.V. Savin, Y.S. Kivshar, B. Hu, Phys. Rev. B 82, 195422 (2010)

    ADS  Google Scholar 

  42. J.A. Baimova, B. Liu, S.V. Dmitriev, N. Srikanth, K. Zhou, Phys. Chem. Chem. Phys. 16, 19505 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Korznikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullina, D.U., Semenova, M.N., Semenov, A.S. et al. Stability of delocalized nonlinear vibrational modes in graphene lattice. Eur. Phys. J. B 92, 249 (2019). https://doi.org/10.1140/epjb/e2019-100436-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100436-y

Keywords

Navigation