Skip to main content
Log in

Spin-resolved transport properties in molybdenum disulfide superlattice

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The effects of the perpendicular magnetic field on the multi-barriers system of 5-barriers to 100-barriers are studied. Considering the low-energy Hamiltonian of the system with spin-orbit coupling we modulate the external magnetic field as the Zeeman energy on the orbital magnetic moment. The transport of an incident electron passing through the superlattice created by the top-gated monolayer MoS2 based on the transfer matrix method is investigated and the spin-up and the spin-down transmissions and the spin-polarization for 5-barriers to 100-barriers are obtained. Comparing the results show that in the case of 30-barriers, we have both reliable transmissions for the system and a 100% spin-polarization so that the spin-flip can occur and gives us a desired spintronic device. We also sketched the variations of the transmissions and spin-polarization versus the relative barrier-widths over the well-widths, (D/W), which show the optimum value is 1 by 2, respectively. Finally, we calculate the spin-up and spin-down conductance and total conductivity of the system which shows the so-called resonant tunneling peaks and amplifying the internal spin-orbit coupling with the external magnetic field as the Zeeman energy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Xu, H. Zhang, Z. Guo, Y. Shan, S. Wu, J. Wang, W. Hu, H. Liu, Z. Sun, C. Luo, X. Wu, Z. Xu, D.W. Zhang, W. Bao, P. Zhou, Small 14, 1 (2018)

    Google Scholar 

  2. A. Kumara, P.K. Ahluwalia, Eur. Phys. J. B 85, 18 (2012)

    Google Scholar 

  3. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    ADS  Google Scholar 

  4. X. Li, J.T. Mullen, Z. Jin, K.M. Borysenko, M. Buongiorno Nardelli, K.W. Kim, Phys. Rev. B 87, 115418 (2013)

    ADS  Google Scholar 

  5. Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, Adv. Mater. 24, 2320 (2012)

    Google Scholar 

  6. H. Rostami, R. Asgari, Phys. Rev. B 91, 075433 (2015)

    ADS  Google Scholar 

  7. Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C. Te Lin, K. Di Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Adv. Mater. 24, 2320 (2012)

    Google Scholar 

  8. H. Wang, L. Yu, Y.H. Lee, W. Fang, A. Hsu, P. Herring, M. Chin, M. Dubey, L.J. Li, J. Kong, T. Palacios, inTech. Dig. - Int. Electron Devices Meet. IEDM (IEEE, 2012), p. 4.6.1

  9. W. Wu, D. De, S. Chang, Y. Wang, H. Peng, J. Bao, Appl. Phys. Lett. 102, 142106 (2013)

    ADS  Google Scholar 

  10. J. Shi, P. Yu, F. Liu, P. He, R. Wang, L. Qin, J. Zhou, X. Li, J. Zhou, X. Sui, S. Zhang, Y. Zhang, Q. Zhang, T.C. Sum, X. Qiu, Z. Liu, X. Liu, Adv. Mater. 29, 1 (2017)

    Google Scholar 

  11. H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A.H. Castro Neto, J. Martin, S. Adam, B. Özyilmaz, G. Eda, Nano Lett. 14, 1909 (2014)

    ADS  Google Scholar 

  12. L. Peng, K. Yao, S. Zhu, Y. Ni, F. Zu, S. Wang, B. Guo, Y. Tian, J. Appl. Phys. 115, 223705 (2014)

    ADS  Google Scholar 

  13. F. Bussolotti, H. Kawai, S.L. Wong, K.E.J. Goh, Phys. Rev. B 99, 045134 (2019)

    ADS  Google Scholar 

  14. Y. Wan, J. Xiao, J. Li, X. Fang, K. Zhang, L. Fu, P. Li, Z. Song, H. Zhang, Y. Wang, M. Zhao, J. Lu, N. Tang, G. Ran, X. Zhang, Y. Ye, L. Dai, Adv. Mater. 30, 1703888 (2018)

    Google Scholar 

  15. H. Kim, W. Kim, M. O’Brien, N. McEvoy, C. Yim, M. Marcia, F. Hauke, A. Hirsch, G.T. Kim, G.S. Duesberg, Nanoscale 10, 17557 (2018)

    Google Scholar 

  16. J. Kim, C. Jin, B. Chen, H. Cai, T. Zhao, P. Lee, S. Kahn, K. Watanabe, T. Taniguchi, S. Tongay, M.F. Crommie, F. Wang, Sci. Adv. 3, e1700518 (2017)

    ADS  Google Scholar 

  17. K.F. Mak, K. He, J. Shan, T.F. Heinz, Nat. Nanotechnol. 7, 494 (2012)

    ADS  Google Scholar 

  18. Z.Y. Zhu, Y.C. Cheng, U. Schwingenschlögl, Phys. Rev. B 84, 153402 (2011)

    ADS  Google Scholar 

  19. X.J. Qiu, Z.Z. Cao, Y.F. Cheng, C.C. Qin, J. Phys.: Condens. Matter 29, 105301 (2017)

    ADS  Google Scholar 

  20. F. Khoeini, K. Shakouri, F.M. Peeters, Phys. Rev. B 94, 125412 (2016)

    ADS  Google Scholar 

  21. H. Yuan, M.S. Bahramy, K. Morimoto, S. Wu, K. Nomura, B.J. Yang, H. Shimotani, R. Suzuki, M. Toh, C. Kloc, X. Xu, R. Arita, N. Nagaosa, Y. Iwasa, Nat. Phys. 9, 563 (2013)

    Google Scholar 

  22. D. Xiao, G. Bin Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012)

    ADS  Google Scholar 

  23. C. Yang, Z. Wang, Q. Zheng, G. Su, Eur. Phys. J. B 92, 136 (2019)

    ADS  Google Scholar 

  24. X. Cui, E.M. Shih, L.A. Jauregui, S.H. Chae, Y.D. Kim, B. Li, D. Seo, K. Pistunova, J. Yin, J.H. Park, H.J. Choi, Y.H. Lee, K. Watanabe, T. Taniguchi, P. Kim, C.R. Dean, J.C. Hone, Nano Lett. 17, 4781 (2017)

    ADS  Google Scholar 

  25. J. Martincová, M. Otyepka, P. Lazar, Chemistry 23, 13233 (2017)

    Google Scholar 

  26. Y. Pan, H. Yin, K. Huang, Z. Zhang, Q. Zhang, K. Jia, Z. Wu, K. Luo, J. Yu, J. Li, W. Wang, T. Ye, IEEE J. Electron Devices Soc. 7, 483 (2019)

    Google Scholar 

  27. A. Dankert, S.P. Dash, Nat. Commun. 8, 16093 (2017)

    ADS  Google Scholar 

  28. Y.K. Luo, J. Xu, T. Zhu, G. Wu, E.J. McCormick, W. Zhan, M.R. Neupane, R.K. Kawakami, Nano Lett. 17, 3877 (2017)

    ADS  Google Scholar 

  29. H. Coy-Diaz, F. Bertran, C. Chen, J. Avila, J. Rault, P. Le Fèvre, M.C. Asensio, M. Batzill, Phys. Stat. Solidi 9, 701 (2015)

    Google Scholar 

  30. A.E. Maniadaki, G. Kopidakis, Phys. Stat. Solidi 10, 453 (2016)

    Google Scholar 

  31. Z.P. Niu, Y.M. Zhang, S. Dong, New J. Phys. 17, 73026 (2015)

    Google Scholar 

  32. D. Kotekar-Patil, J. Deng, S.L. Wong, C.S. Lau, K.E.J. Goh, Appl. Phys. Lett. 114, 013508 (2019)

    ADS  Google Scholar 

  33. E. Faizabadi, M. Esmaeilzadeh, F. Sattaria, Eur. Phys. J. B 85, 198 (2012)

    ADS  Google Scholar 

  34. D. Xiao, G. Bin Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012)

    ADS  Google Scholar 

  35. F. Cheng, Y. Ren, J.F. Sun, Chin. Phys. Lett. 32, 107301 (2015)

    ADS  Google Scholar 

  36. J.F. Sun, F. Cheng, J. Appl. Phys. 115, 5 (2014)

    Google Scholar 

  37. K. Sugawara, T. Sato, Y. Tanaka, S. Souma, T. Takahashi, Appl. Phys. Lett. 107, 071601 (2015)

    ADS  Google Scholar 

  38. Y. Miao, Y. Huang, H. Bao, K. Xu, F. Ma, P.K. Chu, J. Phys.: Condens. Matter 30, 215801 (2018)

    ADS  Google Scholar 

  39. T. Zhan, X. Shi, Y. Dai, X. Liu, J. Zi, J. Phys.: Condens. Matter 25, 215301 (2013)

    ADS  Google Scholar 

  40. X. Li, F. Zhang, Q. Niu, Phys. Rev. Lett. 110, 066803 (2013)

    ADS  Google Scholar 

  41. H. Ochoa, R. Roldán, Phys. Rev. B 87, 245421 (2013)

    ADS  Google Scholar 

  42. P. Ye, R.Y. Yuan, Y.Y. Xia, X. Zhao, J. Phys.: Conf. Ser. 827, 012011 (2017)

    Google Scholar 

  43. T. Yokoyama, Phys. Rev. B 77, 073413 (2008)

    ADS  Google Scholar 

  44. H. Rostami, A.G. Moghaddam, R. Asgari, Phys. Rev. B 88, 085440 (2013)

    ADS  Google Scholar 

  45. L.G. Wang, X. Chen, J. Appl. Phys. 109, 033710 (2011)

    ADS  Google Scholar 

  46. Y. Zhang, J. Ye, Y. Matsuhashi, Y. Iwasa, Nano Lett. 12, 1136 (2012)

    ADS  Google Scholar 

  47. Z.P. Niu, F.X. Li, B.G. Wang, L. Sheng, D.Y. Xing, Eur. Phys. J. B 66, 245 (2008)

    ADS  Google Scholar 

  48. Y.X. Li, J. Phys.: Condens. Matter 22, 1 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edris Faizabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, F., Faizabadi, E., Elahi, S.M. et al. Spin-resolved transport properties in molybdenum disulfide superlattice. Eur. Phys. J. B 92, 226 (2019). https://doi.org/10.1140/epjb/e2019-100341-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100341-y

Keywords

Navigation