Skip to main content
Log in

Electrical and thermal conductivities of few-layer armchair graphene nanoribbons

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The tight-binding Hamiltonian model and the Green’s function formalism have been employed to calculate the temperature dependent electrical and electronic thermal conductivities of metal and few-layer armchair graphene nanoribbon semiconductors and the results were compared with the mono-layer system. It was observed that due to the overlapping of the nonhybridized pz orbital perpendicular to the sheets, increasing the layers of the systems causes the conductivities of the layers to decrease. Also, these quantities are calculated for three different values of interlayer hopping of the nonhybridized pz orbitals. The results show that in low temperatures, the electrical and thermal conductivities of the system increase when the interlayer hopping term is increased. However, by increasing the temperature, the curves representing electrical conductivities converge to the same value while thermal conductivity decreases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  3. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Science 315, 1379 (2007)

    Article  ADS  Google Scholar 

  4. N.M.R. Peres, F. Guinea, A.C. Neto, Phys. Rev. B 73, 125411 (2006)

    Article  ADS  Google Scholar 

  5. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005)

    Article  ADS  Google Scholar 

  6. Y.C. Chen, T. Cao, C. Chen, Z. Pedramrazi, D. Haberer, D.G.d. Oteyza, F.R. Fischer, S.G. Louie, M.F. Crommie, Nat. Nanotechnol. 10, 156 (2015)

    Article  ADS  Google Scholar 

  7. K. Sasaki, S. Murakami, R. Saito, Appl. Phys. Lett. 88, 113110 (2006)

    Article  ADS  Google Scholar 

  8. H.-S.P. Wong, D. Akinwande, Carbon nanotube and graphene device physics (Cambridge University Press, 2011)

  9. K. Wakabayashi, K. Sasaki, T. Nakanishi, T. Enoki, Sci. Technol. Adv. Mater. 11, 054504 (2010)

    Article  Google Scholar 

  10. R.P. Bandaru, J. Nanosci. Nanotechnol. 7, 1239 (2007)

    Article  Google Scholar 

  11. H. Mousavi, M. Bagheri, Physica E 44, 1722 (2012)

    Article  ADS  Google Scholar 

  12. M. Edward, M. Koshino, Rep. Prog. Phys. 76, 056503 (2013)

    Article  ADS  Google Scholar 

  13. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  14. J.C. Charlier, J.P. Michenaud, P. Lambin, Phys. Rev. B 46, 4540 (1992)

    Article  ADS  Google Scholar 

  15. J.C. Charlier, X. Gonze, J.P. Michenaud, Carbon 32, 289 (1994)

    Article  Google Scholar 

  16. J. Nilsson, A.C. Neto, F. Guinea, N.M.R. Peres, Phys. Rev. B 78, 045405 (2008)

    Article  ADS  Google Scholar 

  17. Z. Guo, D. Zhang, X.G. Gong, Appl. Phys. Lett. 95, 163103 (2009)

    Article  ADS  Google Scholar 

  18. J. Hu, X. Ruan, Y.P. Chen, Nano Lett. 9, 2730 (2009)

    Article  ADS  Google Scholar 

  19. N. Wei, L. Xu, H.Q. Wang, J.C. Zheng, Nanotechnology 22, 105705 (2011)

    Article  ADS  Google Scholar 

  20. Z. Aksamija, I. Knezevic, Appl. Phys. Lett. 98, 141919 (2011)

    Article  ADS  Google Scholar 

  21. T.Y. Ng, J.J. Yeo, Z.S. Liu, Carbon 50, 4887 (2012)

    Article  Google Scholar 

  22. T.T. Baby, S. Ramaprabhu, Nanoscale Res. Lett. 6, 289 (2011)

    Article  ADS  Google Scholar 

  23. B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, Powder Technol. 221, 351 (2012)

    Article  Google Scholar 

  24. M. Trushin, J. Schliemann, Phys. Rev. Lett. 99, 216602 (2007)

    Article  ADS  Google Scholar 

  25. T. Schwamb, B.R. Burg, N.C. Schirmer, D. Poulikakos, Nanotechnology 20, 405704 (2009)

    Article  ADS  Google Scholar 

  26. L. Cui, Y. Zhang, X. Du, G. Wei, J. Mater. Sci. 53, 4242 (2018)

    Article  ADS  Google Scholar 

  27. L. Dong, R.R. Namburu, T.P. O’Regan, M. Dubey, A.M. Dongare, J. Mater. Sci. 49, 6762 (2014)

    Article  ADS  Google Scholar 

  28. H. Mousavi, Physica B 414, 78 (2013)

    Article  ADS  Google Scholar 

  29. H. Mousavi, J. Magn. Magn. Mater. 322, 2533 (2010)

    Article  ADS  Google Scholar 

  30. H. Mousavi, M. Bagheri, J. Khodadadi, Physica E 74, 135 (2015)

    Article  ADS  Google Scholar 

  31. H. Mousavi, Opt. Commun. 285, 3137 (2012)

    Article  ADS  Google Scholar 

  32. H. Mousavi, S. Jalilvand, J.M. Kurdestany, Physica B 502, 132 (2016)

    Article  ADS  Google Scholar 

  33. H. Mousavi, S. Jalilvand, F. Mirzaei, J. Magn. Magn. Mater. 469, 405 (2019)

    Article  ADS  Google Scholar 

  34. H. Mousavi, M. Grabowski, J. Low Temp. Phys. 193, 12 (2018)

    Article  ADS  Google Scholar 

  35. H. Bruus, K. Flensberg, Many-body quantum theory in condensed matter physics: an introduction (Oxford University Press, 2004)

  36. E.N. Economou, Green’s functions in quantum physics, 3rd edn. (Springer-Verlag, Berlin-Heidelberg, 2006)

  37. G.D. Mahan, Many particle physics, 3rd edn. (Kluwer Academic/ Publishers, 2000)

  38. S.F. Edwards, Philos. Mag. 3, 1020 (1958)

    Article  ADS  Google Scholar 

  39. S.F. Edwards, Philos. Mag. 4, 1171 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  40. B. Velicky, Phys. Rev. 184, 614 (1969)

    Article  ADS  Google Scholar 

  41. I. Paul, G. Kotliar, Phys. Rev. B 67, 115131 (2003)

    Article  ADS  Google Scholar 

  42. C.L. Lu, C.P. Chang, Y.C. Huang, R.B. Chen, M.L. Lin, Phys. Rev. B 73, 144427 (2006)

    Article  ADS  Google Scholar 

  43. Y. Takane, J. Phys. Soc. Jpn. 79, 124706 (2010)

    Article  ADS  Google Scholar 

  44. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.L.d. Santos, J. Nilsson, F. Guinea, A.K. Geim, A.C. Neto, J. Phys.: Condens. Matter 22, 175503 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamze Mousavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, H., Jalilvand, S. Electrical and thermal conductivities of few-layer armchair graphene nanoribbons. Eur. Phys. J. B 92, 4 (2019). https://doi.org/10.1140/epjb/e2018-90581-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90581-x

Keywords

Navigation