Skip to main content
Log in

Thermal resonance and energy transport in a biharmonically driven Frenkel–Kontorova lattice

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work, we study the heat conduction properties of a one-dimensional Frenkel–Kontorova lattice driven by an external, time-periodic biharmonic force applied locally at one boundary and in contact with two heat reservoirs operating at different temperature by means of molecular dynamics simulations. In the single-frequency externally driven case already studied it was observed that there is a value of the driving frequency at which the heat flux takes its maximum value, a phenomenon termed as thermal resonance. It was also determined that it is possible to direct the heat flow against the imposed temperature bias by adjusting the frequency of the single harmonic driving force. With the implementation of the biharmonic forcing we have explored the temperature range at which thermal resonance effect is present. Furthermore, we have determined that by changing the relative amplitude of both harmonic components as well as the frequency of the second, taken always as a multiple, not necessarily integer, of the first one, we can adjust the frequency at which the studied effect is present in the proposed model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bencowe, Science 304, 56 (2004)

    Article  Google Scholar 

  2. F. Gianzotto, T.T. Hikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006)

    Article  ADS  Google Scholar 

  3. M. Maldovan, Nature 503, 209 (2013)

    Article  ADS  Google Scholar 

  4. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Appl. Phys. Rev. 1, 011305 (2014)

    Article  ADS  Google Scholar 

  5. E.H.C. Bromley, N.J. Kuwada, M.J. Zuckermann, R. Donadini, L. Samii, G.A. Blab, G.J. Gemmen, B.J. Lopez, P.M.G. Curmi, N.R. Forde, D.N. Woolfson, H. Linke, HFSP J. 3, 204 (2009)

    Article  Google Scholar 

  6. H. Murakami, A. Kawabuchi, K. Kotoo, M. Kunitake, N. Nakashima, J. Am. Chem. Soc. 119, 7605 (1997)

    Article  Google Scholar 

  7. C. Cheng, P.R. McGonigal, S.T. Schneebeli, H. Li, N.A. Vermeulen, C. Ke, J.F. Stoddart, Nat. Nanotechnol. 10, 547 (2015)

    Article  ADS  Google Scholar 

  8. V. Blickle, C. Bechinger, Nat. Phys. 8, 143 (2012)

    Article  Google Scholar 

  9. I. Bargatin, M.L. Roukes, Phys. Rev. Lett. 91, 138302 (2003)

    Article  ADS  Google Scholar 

  10. J. Feng, M. Graf, K. Liu, D. Ovchinnikov, D. Dumcenco, M. Heiranian, V. Nandigana, N.R. Aluru, A. Kis, A. Radenovic, Nature 536, 197 (2016)

    Article  ADS  Google Scholar 

  11. M. Terraneo, M. Peyrard, G. Casati, Phys. Rev. Lett. 88, 094302 (2002)

    Article  ADS  Google Scholar 

  12. B. Li, L. Wang, G. Casati, Phys. Rev. Lett. 93, 184301 (2004)

    Article  ADS  Google Scholar 

  13. D. Segal, A. Nitzan, Phys. Rev. Lett. 94, 034301 (2005)

    Article  ADS  Google Scholar 

  14. B. Li, L. Wang, G. Casati, Appl. Phys. Lett. 88, 143501 (2006)

    Article  ADS  Google Scholar 

  15. L. Wang, B. Li, Phys. Rev. Lett. 99, 177208 (2007)

    Article  ADS  Google Scholar 

  16. L. Wang, B. Li, Phys. Rev. Lett. 101, 267203 (2008)

    Article  ADS  Google Scholar 

  17. D. Segal, A. Nitzan, Phys. Rev. E 73, 026109 (2006)

    Article  ADS  Google Scholar 

  18. F. Zhan, N. Li, S. Kohler, P. Hänggi, Phys. Rev. E 80, 061115 (2009)

    Article  ADS  Google Scholar 

  19. N. Li, P. Hänggi, B. Li, Europhys. Lett. 84, 40009 (2008)

    Article  ADS  Google Scholar 

  20. N. Li, F. Zhan, P. Hänggi, B. Li, Phys. Rev. E 80, 011125 (2009)

    Article  ADS  Google Scholar 

  21. B.Q. Ai, D. He, B. Hu, Phys. Rev. E 81, 031124 (2010)

    Article  ADS  Google Scholar 

  22. P. Reimann, Phys. Rep. 361, 57 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  23. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  24. N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Romero-Bastida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Bastida, M., Guerrero-Gonzalez, S. Thermal resonance and energy transport in a biharmonically driven Frenkel–Kontorova lattice. Eur. Phys. J. B 92, 5 (2019). https://doi.org/10.1140/epjb/e2018-90524-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90524-7

Keywords

Navigation