Skip to main content
Log in

Spin–orbit interaction effects in ZnO/ZnS core–shell and ZnS/ZnO inverted core–shell quantum dots

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Rashba and Dresselhaus spin–orbit interactions (SOIs), external fields and dielectric environment effects on hydrogenic impurity states in core–shell (ZnO/ZnS) and inverted core–shell (ZnS/ZnO) quantum dots were studied. We employed the finite difference method to achieve energy eigenvalues of the system. Our results demonstrate that SOIs, external fields and dielectric environment change drastically the impurity states. Besides, the spin degeneracy is removed when both the SOIs and the Zeeman effect are simultaneously considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Kastner, Phys. Today 46, 24 (1993)

    ADS  Google Scholar 

  2. R.C. Ashoori, Nature 379, 413 (1996)

    ADS  Google Scholar 

  3. T. Chakraborty,Quantum Dots (Elsevier, Amsterdam, 1999)

  4. E. Borovitskaya, M.S. Shur,Quantum Dots (World Scientific Publishing, New Jersey, 2003)

    Google Scholar 

  5. P. Harrison,Quantum Wells, Wires and Dots (Wiley, New York, 1999)

  6. S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1283 (2002)

    ADS  Google Scholar 

  7. Y.R. Park, H.Y. Jeong, Y.S. Seo, W.K. Choi, Y.J. Hong, Sci. Reports 7, 46422 (2017)

    ADS  Google Scholar 

  8. M. Nilsson, L. Namazi, S. Lehmann, M. Leijnse, K.A. Dick, C. Thelander, Phys. Rev. B 93, 195422 (2016)

    ADS  Google Scholar 

  9. K. Whitham, J. Yang, B.H. Savitzky, L.F. Kourkoutis, F. Wise, T. Hanrath, Nat. Mater. 15, 557 (2016)

    ADS  Google Scholar 

  10. J. Du, Z. Du, J.-S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, L.-J. Wan, J. Am. Chem. Soc. 138, 4201 (2016)

    Google Scholar 

  11. N.P. Brawand, M.B. Goldey, M. Vörös, G. Galli, Chem. Mater. 29, 1255 (2017)

    Google Scholar 

  12. A. Dehyar, G. Rezaei, A. Zamani, Physica E 84, 175 (2016)

    ADS  Google Scholar 

  13. M. Sabaeian, A. Khaledi-Nasab, Appl. Opt. 51, 4176 (2012)

    ADS  Google Scholar 

  14. W.-F. Xie, Commun. Theor. Phys. 63, 635 (2015)

    ADS  Google Scholar 

  15. M. Sabaeian, M. Shahzadeh, J. Appl. Phys. 116, 043102 (2014)

    ADS  Google Scholar 

  16. S. Baskoutas, E. Paspalakis, A.F. Terzis, J. Phys.: Condens. Matter 19, 395024 (2007)

    Google Scholar 

  17. G. Rezaei, S. Shojaeian Kish, B. Vaseghi, S.F. Taghizadeh, Physica E 62, 104 (2014)

    ADS  Google Scholar 

  18. M. Shahzadeh, M. Sabaeian, J. Opt. Soc. Am. B 32, 1097 (2015)

    ADS  Google Scholar 

  19. Z. Zeng, C.S. Garoufalis, A.F. Terzis, S. Baskoutas, J. Appl. Phys. 114, 023510 (2013)

    ADS  Google Scholar 

  20. W. Xie, Physica B 449, 57 (2014)

    ADS  Google Scholar 

  21. G. Rezaei, S. Shojaeian Kish, Superlattices Microstruct. 53, 99 (2013)

    ADS  Google Scholar 

  22. Z. Zeng, C.S. Garoufalis, S. Baskoutas, G. Bester, Phys. Rev. B 87, 125302 (2013)

    ADS  Google Scholar 

  23. T. Chen, W. Xie, S. Liang, J. Lumin. 139, 64 (2013)

    Google Scholar 

  24. F. Schrey, G. Fasching, T. Müller, G. Strasser, K. Unterrainer, Phys. Stat. Sol. C 1, 434 (2004)

    Google Scholar 

  25. B. Vaseghi, G. Rezaei, M. Malian, Opt. Commun. 287, 241 (2013)

    ADS  Google Scholar 

  26. H. Hassanabadi, H. Rahimov, L. Lu, C. Wang, J. Lumin. 132, 1095 (2012)

    Google Scholar 

  27. R. Khordad, J. Lumin. 134, 201 (2013)

    Google Scholar 

  28. M. Kumar, S. Lahon, P.K. Jha, S. Gumber, M. Mohan, Physica B 438, 29 (2014)

    ADS  Google Scholar 

  29. M. Kumar, S. Lahon, P.K. Jha, M. Mohan, Phys. Stat. Sol. B 250, 1585 (2013)

    ADS  Google Scholar 

  30. S. Debald, B. Kramer, Phys. Rev. B 71, 115322 (2005)

    ADS  Google Scholar 

  31. W. Xu, Y. Guo, Phys. Lett. A 340, 281 (2005)

    ADS  Google Scholar 

  32. C.L. Romano, S.E. Ulloa, P.I. Tamborenea, Phys. Rev. B 71, 035336 (2005)

    ADS  Google Scholar 

  33. S. Giglberger, L.E. Golub, V.V. Belkov, S.N. Danilov, D. Schuh, C. Gerl, F. Rohlfing, J. Stahl, W. Wegscheider, D. Weiss, W. Prettl, S.D. Ganichev, Phys. Rev. B 75, 035327 (2007)

    ADS  Google Scholar 

  34. W. Xu, Y. Guo, Phys. Lett. A 340, 281 (2005)

    ADS  Google Scholar 

  35. S.K. Maiti, J. Appl. Phys. 110, 064306 (2011)

    ADS  Google Scholar 

  36. S.K. Maiti, M. Dey, S. Sil, A. Chakrabarti, S.N. Karmakar, Europhys. Lett. 95, 57008 (2011)

    ADS  Google Scholar 

  37. M. Wang, K. Chang, Phys. Rev. B 77, 125330 (2008)

    ADS  Google Scholar 

  38. A. Zamani, T. Azargoshasb, E. Niknam, Physica B 523, 85 (2017)

    ADS  Google Scholar 

  39. A. Zamani, F. Setareh, T. Azargoshasb, E. Niknam, E. Mohammadhosseini, Superlattices Microstruct. 106, 111 (2017)

    ADS  Google Scholar 

  40. A. Zamani, T. Azargoshasb, E. Niknam, E. Mohammadhosseini, Optik 142, 273 (2017)

    ADS  Google Scholar 

  41. M. Akbari, G. Rezaei, R. Khordad, Superlattices Microstruct. 101, 429 (2017)

    ADS  Google Scholar 

  42. Kh. Shakouri, B. Szafran, M. Esmaeilzadeh, F.M. Peeters, Phys. Rev. B 85, 165314 (2012)

    ADS  Google Scholar 

  43. M.P. Nowak, B. Szafran, Phys. Rev. B 80, 195319 (2009)

    ADS  Google Scholar 

  44. P. Mokhtari, G. Rezaei, A. Zamani, Superlattices Microstruct. 106, 1 (2017)

    ADS  Google Scholar 

  45. Z. Zeng, E. Paspalakis, C.S. Garoufalis, A.F. Terzis, S. Baskoutas, J. Appl. Phys. 113, 054303 (2013)

    ADS  Google Scholar 

  46. Z. Zeng, C.S. Garoufalis, A.F. Terzis, S. Baskoutas, J. Appl. Phys. 114, 023510 (2013)

    ADS  Google Scholar 

  47. G. Allan, C. Delerue, M. Lannoo, E. Martin, Phys. Rev. B 52, 11982 (1995)

    ADS  Google Scholar 

  48. L. Bányai, P. Gilliot, Y.Z. Hu, S.W. Koch, Phys. Rev. B 45, 14136 (1992)

    ADS  Google Scholar 

  49. J.D. Cooper, A. Valavanis, Z. Ikonic, P. Harrison, J.E. Cunningham, J. Appl. Phys. 108, 113109 (2010)

    ADS  Google Scholar 

  50. I. Wayan Sudiarta, D.J. Wallace Geldart, J. Phys. A: Math. Theor. 40, 1885 (2007)

    ADS  Google Scholar 

  51. G.M. Amiraliyev, J. Appl. Math. Comput. 162, 1023 (2005)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Vaseghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, H.R., Vaseghi, B. & Rezaei, G. Spin–orbit interaction effects in ZnO/ZnS core–shell and ZnS/ZnO inverted core–shell quantum dots. Eur. Phys. J. B 91, 284 (2018). https://doi.org/10.1140/epjb/e2018-90429-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90429-5

Keywords

Navigation