Skip to main content
Log in

Electronic stopping and proton dynamics in InP, GaP, and In0.5Ga0.5P from first principles

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The phosphide-based III–V semiconductors InP, GaP, and In0.5Ga0.5P are promising materials for solar panels in outer space and radioisotope batteries, for which lifetime is a major issue. In order to understand high radiation tolerance of these materials and improve it further, it is necessary to describe the early stages of radiation damage on fast time and short length scales. In particular, the influence of atomic ordering, as observed e.g. in In0.5Ga0.5P, on electronic stopping is unknown. We use real-time time-dependent density functional theory and the adiabatic local density approximation to simulate electronic stopping of protons in InP, GaP, and the CuAu-I ordered phase of In0.5Ga0.5P across a large kinetic energy range. These results are compared to SRIM and we investigate the dependence on the channel of the projectile through the target. We show that stopping can be enhanced or reduced in In0.5Ga0.5P and explain this using the electron-density distribution. By comparing Ehrenfest and Born–Oppenheimer molecular dynamics, we illustrate the intricate dynamics of a proton on a channeling trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pavesi, F. Piazza, A. Rudra, J.F. Carlin, M. Ilegems, Phys. Rev. B 44, 9052 (1991)

    ADS  Google Scholar 

  2. M. Bugajski, A.M. Kontkiewicz, H. Mariette, Phys. Rev. B 28, 7105 (1983)

    ADS  Google Scholar 

  3. M.B. Panish, H.C. Casey Jr., J. Appl. Phys. 40, 163 (1969)

    ADS  Google Scholar 

  4. T. Takamoto, E. Ikeda, H. Kurita, M. Ohmori, Appl. Phys. Lett. 70, 381 (1997)

    ADS  Google Scholar 

  5. R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam, Appl. Phys. Lett. 90, 183516 (2007)

    ADS  Google Scholar 

  6. M. Yamaguchi, Sol. Energ. Mat. Sol. C. 68, 31 (2001)

    Google Scholar 

  7. N. Dharmarasu, M. Yamaguchi, A. Khan, T. Yamada, T. Tanabe, S. Takagishi, T. Takamoto, T. Ohshima, H. Itoh, M. Imaizumi, S. Matsuda, Appl. Phys. Lett. 79, 2399 (2001)

    ADS  Google Scholar 

  8. C.D. Cress, B.J. Landi, R.P. Raffaelle, D.M. Wilt, J. Appl. Phys. 100, 114519 (2006)

    ADS  Google Scholar 

  9. M. Yamaguchi, C. Uemura, A. Yamamoto, J. Appl. Phys. 55, 1429 (1984)

    ADS  Google Scholar 

  10. M. Yamaguchi, T. Okuda, S.J. Taylor, T. Takamoto, E. Ikeda, H. Kurita, Appl. Phys. Lett. 70, 1566 (1997)

    ADS  Google Scholar 

  11. W. Shockley, W.T. Read, Phys. Rev. 87, 835 (1952)

    ADS  Google Scholar 

  12. R.N. Hall, Phys. Rev. 87, 387 (1952)

    ADS  Google Scholar 

  13. M. Yamaguchi, J. Appl. Phys. 78, 1476 (1995)

    ADS  Google Scholar 

  14. J. Bourgoin, J. Corbett, Phys. Lett. A 38, 135 (1972)

    ADS  Google Scholar 

  15. N. Itoh, Nucl. Instrum. Meth. B 135, 175 (1998)

    ADS  Google Scholar 

  16. X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Science 327, 1631 (2010)

    ADS  Google Scholar 

  17. J.L. Klatt, R.S. Averback, D.V. Forbes, J.J. Coleman, Phys. Rev. B 48, 17629 (1993)

    ADS  Google Scholar 

  18. M. Jiang, H.Y. Xiao, S.M. Peng, G.X. Yang, Z.J. Liu, X.T. Zu, Sci. Rep.-UK 8, 2012 (2018)

    ADS  Google Scholar 

  19. S. Botti, N. Vast, L. Reining, V. Olevano, L.C. Andreani, Phys. Rev. Lett. 89, 216803 (2002)

    ADS  Google Scholar 

  20. S. Botti, N. Vast, L. Reining, V. Olevano, L.C. Andreani, Phys. Rev. B 70, 045301 (2004)

    ADS  Google Scholar 

  21. G. Gumbs, Phys. Rev. B 37, 10184 (1988)

    ADS  Google Scholar 

  22. H. Bethe, Ann. Phys. 397, 325 (1930)

    Google Scholar 

  23. S.A. Cruz, Radiat. Eff. Defect. S. 167, 621 (2012)

    Google Scholar 

  24. G.B. Stringfellow, G.S. Chen, J. Vac. Sci. Technol. B 9, 2182 (1991)

    Google Scholar 

  25. T.S. Kuan, T.F. Kuech, W.I. Wang, E.L. Wilkie, Phys. Rev. Lett. 54, 201 (1985)

    ADS  Google Scholar 

  26. T. Suzuki, A. Gomyo, S. Iijima, K. Kobayashi, S. Kawata, I. Hino, T. Yuasa, Jpn. J. Appl. Phys. 27, 2098 (1988)

    ADS  Google Scholar 

  27. S.-H. Wei, A. Zunger, Phys. Rev. B 49, 14337 (1994)

    ADS  Google Scholar 

  28. A. Hassine, J. Sapriel, P. Le Berre, M.A. Di Forte-Poisson, F. Alexandre, M. Quillec, Phys. Rev. B 54, 2728 (1996)

    ADS  Google Scholar 

  29. V. Ozoliņš, A. Zunger, Phys. Rev. B 57, R9404 (1998)

    ADS  Google Scholar 

  30. J.C. Duda, T.S. English, D.A. Jordan, P.M. Norris, W.A. Soffa, J. Phys.: Condens. Matter 23, 205401 (2011)

    ADS  Google Scholar 

  31. L. Chernyak, A. Osinsky, H. Temkin, A. Mintairov, I.G. Malkina, B.N. Zvonkov, Y.N. Saf’anov, Appl. Phys. Lett. 70, 2425 (1997)

    ADS  Google Scholar 

  32. F. Gygi,Qbox open source code project, Tech. Rep. (University of California, Davis), https://doi.org/eslab.ucdavis.edu/

  33. E.W. Draeger, F. Gygi, “ Qbox code, Qb@ll version,” (2017), Lawrence Livermore National Laboratory

  34. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    ADS  Google Scholar 

  35. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    ADS  Google Scholar 

  36. S.-J. Kim, H. Asahi, K. Asami, S. Gonda, Jpn. J. Appl. Phys. 38, L1372 (1999)

    Google Scholar 

  37. O. Ueda, M. Takikawa, J. Komeno, I. Umebu, Jpn. J. Appl. Phys. 26, L1824 (1987)

    ADS  Google Scholar 

  38. P. Bellon, J.P. Chevalier, G.P. Martin, E. Dupont-Nivet, C. Thiebaut, J.P. André, Appl. Phys. Lett. 52, 567 (1988)

    ADS  Google Scholar 

  39. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    ADS  Google Scholar 

  40. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    ADS  Google Scholar 

  41. D. Vanderbilt, Phys. Rev. B 32, 8412 (1985)

    ADS  Google Scholar 

  42. F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)

    ADS  Google Scholar 

  43. D. Marx, H. Jurg, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, 2009)

  44. P. Ehrenfest, Z. Phys. A Hadron. Nucl. 45, 455 (1927)

    Google Scholar 

  45. A. Schleife, E.W. Draeger, V.M. Anisimov, A.A. Correa, Y. Kanai, Comput. Sci. Eng. 16, 54 (2014)

    Google Scholar 

  46. E.W. Draeger, X. Andrade, J.A. Gunnels, A. Bhatele, A. Schleife, A.A. Correa, J. Parallel Distrib. Comput. 106, 205 (2017)

    Google Scholar 

  47. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    ADS  Google Scholar 

  48. A. Schleife, E.W. Draeger, Y. Kanai, A.A. Correa, J. Chem. Phys. 137, 22A546 (2012)

    Google Scholar 

  49. J.F. Ziegler, in Handbook of Stopping Cross-Sections for En-Ergetic Ions in All Elements (Pergamon Press, New York, 1980), p. 432

  50. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum.Methods B 268, 1818 (2010)

    ADS  Google Scholar 

  51. R. Smith, R.P. Webb, Phil. Mag. Lett. 64, 253 (1991)

    ADS  Google Scholar 

  52. A. Schleife, Y. Kanai, A.A. Correa, Phys. Rev. B 91, 014306 (2015)

    ADS  Google Scholar 

  53. R. Ullah, F. Corsetti, D. Sánchez-Portal, E. Artacho, Phys. Rev. B 91, 125203 (2015)

    ADS  Google Scholar 

  54. H. Winter, J.I. Juaristi, I. Nagy, A. Arnau, P.M. Echenique, Phys. Rev. B 67, 245401 (2003)

    ADS  Google Scholar 

  55. E.E. Quashie, B.C. Saha, A.A. Correa, Phys. Rev. B 94, 155403 (2016)

    ADS  Google Scholar 

  56. D.C. Yost, Y. Yao, Y. Kanai, Phys. Rev. B 96, 115134 (2017)

    ADS  Google Scholar 

  57. V.U. Nazarov, J.M. Pitarke, Y. Takada, G. Vignale, Y.-C. Chang, Phys. Rev. B 76, 205103 (2007)

    ADS  Google Scholar 

  58. A.A. Correa, Comput. Mater. Sci. 150, 291 (2018)

    Google Scholar 

  59. W.A. Lindhard, J. Mat. Fys. Medd. Dan. Vid. Selsk. 34, 1 (1964)

    Google Scholar 

  60. N. Seddiki, T. Ouahrani, B. Lasri, T. Benouaz, A. Reshak, B. Bouhafs, Mater. Sci. Semicond. Process. 16, 1454 (2013)

    Google Scholar 

  61. A.A. Correa, J. Kohanoff, E. Artacho, D. Sánchez-Portal, A. Caro, Phys. Rev. Lett. 108, 213201 (2012)

    ADS  Google Scholar 

  62. D.S. Gemmell, Rev. Mod. Phys. 46, 129 (1974)

    ADS  Google Scholar 

  63. A. Lim, W.M.C. Foulkes, A.P. Horsfield, D.R. Mason, A. Schleife, E.W. Draeger, A.A. Correa, Phys. Rev. Lett. 116, 043201 (2016)

    ADS  Google Scholar 

  64. A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, “Nist atomic spectra database (version 5.5.3)”, National Institute of Standards and Technology, 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Schleife.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Supplementary material in the form of one pdf file available from the Journal web page at https://doi.org/10.1140/epjb/e2018-90204-8.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CW., Schleife, A. Electronic stopping and proton dynamics in InP, GaP, and In0.5Ga0.5P from first principles. Eur. Phys. J. B 91, 222 (2018). https://doi.org/10.1140/epjb/e2018-90204-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90204-8

Navigation