Skip to main content
Log in

Natural orbitals of helium in linearly polarized laser fields

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Practicable equations of motion for the natural orbitals of a spin-singlet helium atom in a linearly polarized laser field are presented. The cylindrical symmetry of the two-electron problem with quantum number M = 0 is shown to yield a sparse expansion of natural orbitals in spherical harmonics. This optimization facilitates the propagation of renormalized natural orbitals of the helium atom. As a demonstration, the equations of motion are solved for a high-harmonic-generation process. In addition to the expected plateau from the single-active-electron picture, the spectrum of emitted radiation features a second plateau at higher harmonic orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Agostini, L.F. DiMauro, Rep. Prog. Phys. 67, 813 (2004)

    Article  ADS  Google Scholar 

  2. A. Scrinzi, M.Y. Ivanov, R. Kienberger, D.M. Villeneuve, J. Phys. B 39, R1 (2006)

    Article  Google Scholar 

  3. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  4. J.L. Krause, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 68, 3535 (1992)

    Article  ADS  Google Scholar 

  5. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  6. M. Lewenstein, P. Balcou, M.Y. Ivanov, A. L’Huillier, P.B. Corkum, Phys. Rev. A 49, 2117 (1994)

    Article  ADS  Google Scholar 

  7. I. Ivanov, A. Kheifets, J. Phys. B 42, 145601 (2009)

    Article  ADS  Google Scholar 

  8. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999)

    Article  ADS  Google Scholar 

  9. J. Rapp, M. Brics, D. Bauer, Phys. Rev. A 90, 012518 (2014)

    Article  ADS  Google Scholar 

  10. M. Brics, D. Bauer, Phys. Rev. A 88, 052514 (2013)

    Article  ADS  Google Scholar 

  11. M. Brics, J. Rapp, D. Bauer, Phys. Rev. A 90, 053418 (2014)

    Article  ADS  Google Scholar 

  12. M. Brics, J. Rapp, D. Bauer, J. Phys. B: At. Mol. Opt. Phys. 50, 144003 (2017)

    Article  ADS  Google Scholar 

  13. M. Brics, J. Rapp, D. Bauer, Phys. Rev. A 93, 013404 (2016)

    Article  ADS  Google Scholar 

  14. A. Hanusch, J. Rapp, M. Brics, D. Bauer, Phys. Rev. A 93, 043414 (2016)

    Article  ADS  Google Scholar 

  15. P.O. Löwdin, Phys. Rev. 97, 1474 (1955)

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Appel, Ph.D. thesis, Freie Universität Berlin, Berlin, 2007, URN:nbn:de:kobv:188-fudissthesis000000003068-3, Available at: http://nbn-resolving.org/resolver?identifier=urn:nbn:de:kobv:188-fudissthesis000000003068-3

  17. K.J.H. Giesbertz, Ph.D. thesis, Free University Amsterdam, Amsterdam, 2010, URN:nbn:nl:ui:31-1871/16289, Available at: http://www.persistent-identifier.nl/?identifier=urn:nbn:nl:ui:31-1871/16289

  18. K.L. Ishikawa, T. Sato, IEEE J. Sel. Topics Quantum Electron. 21, 1 (2015)

    Article  Google Scholar 

  19. C.A. Ullrich, Time-dependent density-functional theory: concepts and applications (Oxford University Press, New York, 2011)

  20. E. Runge, E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984)

    Article  ADS  Google Scholar 

  21. N.N. Bogoliubov, J. Phys. USSR 10, 265 (1946)

    Google Scholar 

  22. N.N. Bogoliubov, K.P. Gurov, J. Exp. Theor. Phys. 17, 614 (1947) [in Russian]

    Google Scholar 

  23. M. Born, H.S. Green, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 188, 10 (1946)

    Article  ADS  Google Scholar 

  24. J.G. Kirkwood, J. Chem. Phys. 15, 72 (1947)

    Article  ADS  Google Scholar 

  25. J.G. Kirkwood, J. Chem. Phys. 14, 180 (1946)

    Article  ADS  Google Scholar 

  26. J. Yvon, in La Théorie Statistique des Fluides et l’Équation d’Etat, Actualités Scientifiques et Industrielles (Hermann, Paris, 1935), Vol. 203

  27. P. Elliott, N.T. Maitra, Int. J. Quantum Chem. 116, 772 (2016)

    Article  Google Scholar 

  28. F. Lackner, I. Březinová, T. Sato, K.L. Ishikawa, J. Burgdörfer, Phys. Rev. A 91, 023412 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  29. F. Lackner, I. Březinová, T. Sato, K.L. Ishikawa, J. Burgdörfer, Phys. Rev. A 95, 033414 (2017)

    Article  ADS  Google Scholar 

  30. A. Akbari, M.J. Hashemi, A. Rubio, R.M. Nieminen, R. van Leeuwen, Phys. Rev. B 85, 235121 (2012)

    Article  ADS  Google Scholar 

  31. S. Krönke, P. Schmelcher, arXiv:1712.00819 (2017)

  32. A.M.K. Müller, Phys. Lett. A 105, 446 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  33. S. Goedecker, C.J. Umrigar, Phys. Rev. Lett. 81, 866 (1998)

    Article  ADS  Google Scholar 

  34. O. Gritsenko, K. Pernal, E.J. Baerends, J. Chem. Phys. 122, 204102 (2005)

    Article  ADS  Google Scholar 

  35. E.N. Zarkadoula, S. Sharma, J.K. Dewhurst, E.K.U. Gross, N.N. Lathiotakis, Phys. Rev. A 85, 032504 (2012)

    Article  ADS  Google Scholar 

  36. M. Piris, Int. J. Quantum Chem. 113, 620 (2013)

    Article  Google Scholar 

  37. M. Piris, J.M. Ugalde, Int. J. Quantum Chem. 114, 1169 (2014)

    Article  Google Scholar 

  38. K. Pernal, K.J.H. Giesbertz, in Reduced density matrix functional theory (RDMFT) and linear response time-dependent RDMFT (TD-RDMFT) (Springer International Publishing, Cham, 2016), pp. 125–183

  39. M. Rodriguez-Mayorga, E. Ramos-Cordoba, M. Via-Nadal, M. Piris, E. Matito, Phys. Chem. Chem. Phys. 19, 24029 (2017)

    Article  Google Scholar 

  40. K.J.H. Giesbertz, R. van Leeuwen, J. Chem. Phys. 139, 104110 (2013)

    Article  ADS  Google Scholar 

  41. K.J.H. Giesbertz, O.V. Gritsenko, E.J. Baerends, J. Chem. Phys. 133, 174119 (2010)

    Article  ADS  Google Scholar 

  42. E.R. Davidson, J. Chem. Phys. 39, 875 (1963)

    Article  ADS  Google Scholar 

  43. D.P. Carroll, H.J. Silverstone, R.M. Metzger, J. Chem. Phys. 71, 4142 (1979)

    Article  ADS  Google Scholar 

  44. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum theory of angular momentum (World Scientific Publishing Company, Singapore, 1988)

  45. R. Horn, C. Johnson, Matrix analysis, 2nd edn. (Cambridge University Press, New York, 2012)

  46. D. Bauer, P. Koval, Comput. Phys. Commun. 174, 396 (2006)

    Article  ADS  Google Scholar 

  47. Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, K. Toyoda, Phys. Rev. Lett. 69, 2176 (1992)

    Article  ADS  Google Scholar 

  48. J.L. Krause, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 68, 3535 (1992)

    Article  ADS  Google Scholar 

  49. C.A. Ullrich, S. Erhard, E.K.U. Gross, in Super-intense laser-atom physics IV , edited by H. Muller, M. Fedorov (Kluwer, Dordrecht, Boston, London, 1996), pp. 267–284

  50. B. Walker, B. Sheehy, L.F. DiMauro, P. Agostini, K.J. Schafer, K.C. Kulander, Phys. Rev. Lett. 73, 1227 (1994)

    Article  ADS  Google Scholar 

  51. I. Tikhomirov, T. Sato, K.L. Ishikawa, Phys. Rev. Lett. 118, 203202 (2017)

    Article  ADS  Google Scholar 

  52. P.M. Abanador, F. Mauger, K. Lopata, M.B. Gaarde, K.J. Schafer, Phys. Rev. A 97, 043414 (2018)

    Article  ADS  Google Scholar 

  53. P. Koval, F. Wilken, D. Bauer, C.H. Keitel, Phys. Rev. Lett. 98, 043904 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Bauer.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapp, J., Bauer, D. Natural orbitals of helium in linearly polarized laser fields. Eur. Phys. J. B 91, 151 (2018). https://doi.org/10.1140/epjb/e2018-90178-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90178-5

Navigation