Skip to main content

Advertisement

Log in

Tunability of electronic and optical properties of the Ba–Zr–S system via dimensional reduction

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Transition metal sulfide perovskites offer lower band gaps and greater tunability than oxides, along with other desirable properties for applications. Here, we explore dimensional reduction as a tuning strategy using the Ruddlesden–Popper phases in the Ba–Zr–S system as a model. The three-dimensional perovskite BaZrS3 is a direct gap semiconductor, with a band gap of 1.5 eV suitable for solar photovoltaic application. However, the three known members of the Ruddlesden–Popper series, are all indirect gap materials, and additionally have lower fundamental band gaps. This is accompanied in the case of Ba2ZrS4 by a band structure that is more favorable for carrier transport for oriented samples. The layered Ruddlesden–Popper compounds show significantly anisotropic optical properties, as may be expected. The optical spectra show tails at low energy, which may complicate experimental characterization of these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Perera, H. Hui, C. Zhao, H. Xue, F. Sun, C. Deng, N. Gross, C. Milleville, X. Xu, D.F. Watson, B. Weinstein, Y.Y. Sun, S. Zhang, H. Zeng, Nano Energy 22, 129 (2016)

    Article  Google Scholar 

  2. S. Niu, H. Huyan, Y. Liu, M. Yeung, K. Ye, L. Blankemeier, T. Orvis, D. Sarkar, D.J. Singh, R. Kapadia, J. Ravichandran, Adv. Mater. 29, 1604733 (2017)

    Article  Google Scholar 

  3. Y.Y. Sun, M.L. Agiorgousis, P. Zhang, S. Zhang, Nano Lett. 15, 581 (2015)

    Article  ADS  Google Scholar 

  4. W. Meng, B. Saparov, F. Hong, J. Wang, D. Mitzi, Y. Yan, Chem. Mater. 28, 821 (2016)

    Article  Google Scholar 

  5. J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000)

    Article  Google Scholar 

  6. S. Niu, G. Joe, H. Zhao, Y. Zhou, T. Orvis, H. Huyan, J. Salman, K. Mahalingam, B. Urwin, J. Wu, Y. Liu, T.E. Tiwald, S.B. Cronin, B.M. Howe, M. Mecklenburg, R. Haiges, D.J. Singh, H. Wang, M.A. Kats, J. Ravichandran, Nat. Photonics 12, 392 (2018)

    Article  ADS  Google Scholar 

  7. H. Kroemer, Proc. IEEE 51, 1782 (1963)

    Article  Google Scholar 

  8. L. D. Hicks, M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  9. J. Zhang, L. Song, G.K.H. Madsen, K.F.F. Fischer, W. Zhang, X. Shi, B.B. Iversen, Nat. Commun. 7, 10892 (2016)

    Article  ADS  Google Scholar 

  10. G. Xing, J. Sun, Y. Li, X. Fan, W. Zheng, D.J. Singh, Phys. Rev. Mater. 1, 065405 (2017)

    Article  Google Scholar 

  11. I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56, 12685 (1997)

    Article  ADS  Google Scholar 

  12. Y. Li, L. Zhang, Y. Ma, D.J. Singh, APL Mater. 3, 011102 (2015)

    Article  ADS  Google Scholar 

  13. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Article  ADS  Google Scholar 

  14. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnson-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, J.E. Goldberger, ACS Nano 7, 2898 (2013)

    Article  Google Scholar 

  15. A. Ohtomo, H. Y. Hwang, Nature 427, 423 (2004)

    Article  ADS  Google Scholar 

  16. D. Parker, X. Chen, D.J. Singh, Phys. Rev. Lett. 110, 146601 (2013)

    Article  ADS  Google Scholar 

  17. S.N. Ruddlesden, P. Popper, Acta Cryst. 10, 538 (1957)

    Article  Google Scholar 

  18. R. Lelieveld, D.J.M. Ijdo, Acta Crysallogr. B 36, 2223 (1980)

    Article  Google Scholar 

  19. M. Saeki, Y. Yajima, M. Onoda, J. Solid State Chem. 92, 286 (1991)

    Article  ADS  Google Scholar 

  20. B.H. Chen, B.W. Eichhorn, N.W. Wong, Acta Crysallogr. C 50, 161 (1994)

    Article  Google Scholar 

  21. B.H. Chen, N.W. Wong, B.W. Eichhorn, J. Solid State Chem. 103, 75 (1993)

    Article  ADS  Google Scholar 

  22. R.D. Shannon, Acta Cryst. A32, 751 (1976)

    Article  Google Scholar 

  23. D.J. Singh, L. Nordstrom, Planewaves Pseudopotentials and the LAPW Method, 2nd edn. (Springer, Berlin, 2006)

  24. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties  (K. Schwarz, Tech. Univ. Wien, Austria, 2001)

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  26. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  27. D. Koller, F. Tran, P. Blaha, Phys. Rev. B 83, 195134 (2011)

    Article  ADS  Google Scholar 

  28. D.J. Singh, Phys. Rev. B 82, 205102 (2010)

    Article  ADS  Google Scholar 

  29. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  30. D. Zagorac, K. Doll, J. Zagorac, D. Jordanov, B. Matovic, Inorg. Chem. 56, 10644 (2017)

    Article  Google Scholar 

  31. J.M. Polfus, T. Norby, R. Bredesen, J. Phys. Chem. C 119, 23875 (2015)

    Article  Google Scholar 

  32. J. Sun, D.J. Singh, APL Mater. 4, 104803 (2016)

    Article  ADS  Google Scholar 

  33. M. Lax, Symmetry Principles in Solid State and Molecular Physics (Wiley, New York, 1974)

  34. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Singh.

Additional information

Contribution to the Topical Issue “Special issue in honor of Hardy Gross”, edited by C.A. Ullrich, F.M.S. Nogueira, A. Rubio, and M.A.L. Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Singh, D.J. Tunability of electronic and optical properties of the Ba–Zr–S system via dimensional reduction. Eur. Phys. J. B 91, 188 (2018). https://doi.org/10.1140/epjb/e2018-90125-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-90125-6

Navigation