Skip to main content
Log in

Global quantum discord and matrix product density operators

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In a previous study, we have proposed a procedure to study global quantum discord in 1D chains whose ground states are described by matrix product states [Z.-Y. Sun et al., Ann. Phys. 359, 115 (2015)]. In this paper, we show that with a very simple generalization, the procedure can be used to investigate quantum mixed states described by matrix product density operators, such as quantum chains at finite temperatures and 1D subchains in high-dimensional lattices. As an example, we study the global discord in the ground state of a 2D transverse-field Ising lattice, and pay our attention to the scaling behavior of global discord in 1D sub-chains of the lattice. We find that, for any strength of the magnetic field, global discord always shows a linear scaling behavior as the increase of the length of the sub-chains. In addition, global discord and the so-called “discord density” can be used to indicate the quantum phase transition in the model. Furthermore, based upon our numerical results, we make some reliable predictions about the scaling of global discord defined on the n × n sub-squares in the lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  2. D.N. Page, Phys. Rev. Lett. 71, 1291 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  4. J. Eisert, M. Cramer, M.B. Plenio, Rev. Mod. Phys. 82, 277 (2010)

    Article  ADS  Google Scholar 

  5. M.M. Wolf, Phys. Rev. Lett. 96, 010404 (2006)

    Article  ADS  Google Scholar 

  6. U. Schollwock, Rev. Mod. Phys. 77, 259 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. O. Roman, Ann. Phys. 349, 117 (2013)

    Google Scholar 

  8. G. Adesso, T.R. Bromley, M. Cianciaruso, J. Phys. A: Math. Theor. 49, 473001 (2016)

    Article  ADS  Google Scholar 

  9. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  10. T. Werlang, S. Souza, F.F. Fanchini, C.J. Villas Boas, Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  11. G. Karpat, B. Cakmak, F.F. Fanchini, Phys. Rev. B 90, 104431 (2014)

    Article  ADS  Google Scholar 

  12. M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen, et al. Phys. Rev. A 71, 062307 (2005)

    Article  ADS  Google Scholar 

  13. J. Bell, Physics 1, 195 (1964)

    Article  Google Scholar 

  14. M.A. Rowe, D. Kielpinski, V. Meyer, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, Nature (London) 409, 791 (2001)

    Article  ADS  Google Scholar 

  15. M.S. Sarandy, Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  16. R. Dillenschneider, Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  17. Z.Y. Sun, L. Li, K.L. Yao, G.H. Du, J.W. Liu, B. Luo, N. Li, H.N. Li, Phys. Rev. A 82, 032310 (2010)

    Article  ADS  Google Scholar 

  18. T. Werlang, C. Trippe, G. Ribeiro, G. Rigolin, Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  19. C.C. Rulli and M.S. Sarandy. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  20. M. Okrasa, Z. Walczak. Europhys. Lett. 96, 60003 (2011)

    Article  ADS  Google Scholar 

  21. J. Xu, Phys. Lett. A 377, 238 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. S.-Y. Liu, Y.-R. Zhang, L.-M. Zhao, W.-L. Yang, H. Fan, Ann. Phys. 348, 256 (2014)

    Article  ADS  Google Scholar 

  23. S. Campbell, L. Mazzola, G. De Chiara, T.J.G. Apollaro, F. Plastina, T. Busch, M. Paternostro, New J. Phys. 15, 043033 (2013)

    Article  ADS  Google Scholar 

  24. Z.-Y. Sun, Y.-E. Liao, B. Guo, H.-L. Huang, Ann. Phys. 359, 115 (2015)

    Article  Google Scholar 

  25. U. Schollwock, Ann. Phys. 326, 96 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)

    Article  ADS  Google Scholar 

  27. F. Verstraete, J.J. Garcia-Ripoll, J.I. Cirac, Phys. Rev. Lett. 93, 207204 (2004)

    Article  ADS  Google Scholar 

  28. J. Jordan, R. Orus, G. Vidal, F. Verstraete, J.I. Cirac, Phys. Rev. Lett. 101, 250602 (2008)

    Article  ADS  Google Scholar 

  29. H.N. Phien, J.A. Bengua, H.D. Tuan, P. Corboz, R. Orus, Phys. Rev. B 92, 035142 (2015)

    Article  ADS  Google Scholar 

  30. S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  31. R. Orus, G. Vidal, Phys. Rev. B 80, 094403 (2009)

    Article  ADS  Google Scholar 

  32. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Yu Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, HL., Cheng, HG., Guo, X. et al. Global quantum discord and matrix product density operators. Eur. Phys. J. B 91, 117 (2018). https://doi.org/10.1140/epjb/e2018-80691-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80691-x

Keywords

Navigation