Skip to main content

Advertisement

Log in

Systematic investigation of the reactive ion beam sputter deposition process of SiO2

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Ion beam sputter deposition (IBSD) is an established physical vapour deposition technique that offers the opportunity to tailor the properties of film-forming particles and, consequently, film properties. This is because of two reasons: (i) ion generation and acceleration (ion source), sputtering (target) and film deposition (substrate) are locally separated. (ii) The angular and energy distribution of sputtered target atoms and scattered primary particles depend on ion incidence angle, ion energy, and ion species. Ion beam sputtering of a Si target in a reactive oxygen atmosphere was used to grow SiO2 films on silicon substrates. The sputtering geometry, ion energy and ion species were varied systematically and their influence on film properties was investigated. The SiO2 films are amorphous. The growth rate increases with increasing ion energy and ion incidence angle. Thickness, index of refraction, stoichiometry, mass density and surface roughness show a strong correlation with the sputtering geometry. A considerable amount of primary inert gas particles is found in the deposited films. The primary ion species also has an impact on the film properties, whereas the influence of the ion energy is rather small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Behrisch, W. Eckstein eds. Sputtering by particle bombardment: experiments and computer calculations from threshold to mev energies (Springer, Berlin, 2007)

  2. S. Rossnagel, J. Sites, J. Vac. Sci. Technol. A 2, 376 (1984)

    Article  ADS  Google Scholar 

  3. T. Motohiro, Y. Taga, Thin Solid Films 120, 313 (1984)

    Article  ADS  Google Scholar 

  4. K. Nomura, H. Ogawa, J. Appl. Phys. 71, 1469 (1992)

    Article  ADS  Google Scholar 

  5. A. Tabata, N. Matsuno, Y. Suzuoki, T. Mizutani, Thin Solid Films 289, 84 (1996)

    Article  ADS  Google Scholar 

  6. M. Alvisi, G. De Nunzio, M. Ferrara, M. Perrone, A. Rizzo, S. Scaglione, L. Vasanelli, J. Vac. Sci. Technol. A 16, 3408 (1998)

    Article  ADS  Google Scholar 

  7. H. Liu, S. Xiong, L. Li, Y. Zhang, Thin Solid Films 484, 170 (2005)

    Article  ADS  Google Scholar 

  8. I. Radović, Y. Serruys, Y. Limoge, N. Bibić, S. Poissonnet, O. Jaoul, M. Mitrić, N. Romčević, M. Milosavljević, Mater. Chem. Phys. 104, 172 (2007)

    Article  Google Scholar 

  9. I. Radović, Y. Serruys, Y. Limoge, M. Mitrić, M. Milosavljević, N. Romčević, N. Bibić, Optoelectron. Adv. Mat. 1, 247 (2007)

    Google Scholar 

  10. C. Bundesmann, I.-M. Eichentopf, S. Mändl, H. Neumann, Thin Solid Films 516, 8604 (2008)

    Article  ADS  Google Scholar 

  11. O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, M. Grössl, Thin Solid Films 517, 6058 (2009)

    Article  ADS  Google Scholar 

  12. Y. Ji, Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, R. Fan, D. Chen, Thin Solid Films 545, 111 (2013)

    Article  ADS  Google Scholar 

  13. Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, X. Cheng, Y. Yang, Y. Ji, Appl. Opt. 53, A83 (2014)

    Article  ADS  Google Scholar 

  14. Y. Ji, Y. Jiang, H. Liu, L. Wang, D. Liu, C. Jiang, R. Fan, D. Chen, Chin. Phys. Lett. 31, 046401 (2014)

    Article  ADS  Google Scholar 

  15. G. Emiliani, S. Scaglione, J. Vac. Sci. Technol. A 5, 1824 (1987)

    Article  ADS  Google Scholar 

  16. M. Lambrinos, R. Valizadeh, J. Colligon, J. Vac. Sci. Technol. B 16, 589 (1998)

    Article  Google Scholar 

  17. M. Alvisi, G. De Nunzio, M. Perrone, A. Rizzo, S. Scaglione, L. Vasanelli, Thin Solid Films 338, 269 (1999)

    Article  ADS  Google Scholar 

  18. J. Wu, C. Lee, Appl. Opt. 45, 3510 (2006)

    Article  ADS  Google Scholar 

  19. J. Seong, D. Choi, K. Yoon, J. Non-Cryst. Solids 352, 84 (2006)

    Article  ADS  Google Scholar 

  20. J. Seong, D. Choi, J. Appl. Polym. Sci. 105, 2444 (2007)

    Article  Google Scholar 

  21. A. Ullah, H. Wilke, I. Memon, Y. Shen, D.T. Nguyen, C. Woidt, H. Hillmer, J. Micromech. Microeng. 25, 055019 (2015)

    Article  ADS  Google Scholar 

  22. R. Feder, C. Bundesmann, H. Neumann, B. Rauschenbach, Nucl. Instrum. Methods Phys. Res. Sect. B 316, 198 (2013)

    Article  ADS  Google Scholar 

  23. R. Feder, F. Frost, H. Neumann, C. Bundesmann, B. Rauschenbach, Nucl. Instrum. Methods Phys. Res. Sect. B 317, 137 (2013)

    Article  ADS  Google Scholar 

  24. C. Bundesmann, R. Feder, J. Gerlach, H. Neumann, Thin Solid Films 551, 46 (2014)

    Article  ADS  Google Scholar 

  25. C. Bundesmann, R. Feder, T. Lautenschläger, H. Neumann, Contrib. Plasma Phys. 55, 737 (2015)

    Article  ADS  Google Scholar 

  26. R. Feder, C. Bundesmann, H. Neumann, B. Rauschenbach, Nucl. Instrum. Methods Phys. Res. Sect. B 334, 88 (2014)

    Article  ADS  Google Scholar 

  27. C. Bundesmann, R. Feder, R. Wunderlich, U. Teschner, M. Grundmann, H. Neumann, Thin Solid Films 589, 487 (2015)

    Article  ADS  Google Scholar 

  28. T. Lautenschläger, R. Feder, H. Neumann, C. Rice, M. Schubert, C. Bundesmann, Nucl. Instrum.Methods Phys. Res. Sect. B 385, 30 (2016)

    Article  ADS  Google Scholar 

  29. T. Lautenschläger, C. Bundesmann, J. Vac. Sci. Technol. A 35, 041001 (2017)

    Article  Google Scholar 

  30. C. Bundesmann, T. Lautenschläger, E. Thelander, D. Spemann, Nucl. Instrum. Methods Phys. Res. Sect. B 395, 17 (2017)

    Article  ADS  Google Scholar 

  31. C. Bundesmann, T. Lautenschläger, D. Spemann, A. Finzel, E. Thelander, M. Mensing, F. Frost, Appl. Surf. Sci. 42, 331 (2017)

    Article  ADS  Google Scholar 

  32. C. Bundesmann, T. Lautenschläger, D. Spemann, A. Finzel, M. Mensing, F. Frost, Eur. Phys. J. B 90, 197 (2017)

    Article  ADS  Google Scholar 

  33. M. Zeuner, F. Scholze, B. Dathe, H. Neumann, Surf. Coat. Technol. 142–144, 39 (2001)

    Article  Google Scholar 

  34. D. Spemann, T. Reinert, J. Vogt, T. Andrea, N. Barapatre, R. Feder, A. Jakob, N. Liebing, C. Meinecke, F. Menzel, M. Rothermel, T. Butz, Nucl. Instrum. Methods Phys. Res. Sect. B 269, 2175 (2011)

    Article  ADS  Google Scholar 

  35. H. Fujiwara, Spectroscopic ellipsometry: principles and applications (John Wiley & Sons, Chichester, 2007)

  36. C. Herzinger, B. Johs, W. McGahan, J. Woollam, W. Paulson, J. Appl. Phys. 83, 3323 (1998)

    Article  ADS  Google Scholar 

  37. N. Laegreid, G. Wehner, J. Appl. Phys. 32, 365 (1961)

    Article  ADS  Google Scholar 

  38. D. Rosenberg, G. Wehner, J. Appl. Phys. 33, 1842 (1962)

    Article  ADS  Google Scholar 

  39. J. Kirschner, H. Etzkorn, Appl. Surf. Sci. 3, 251 (1979)

    Article  ADS  Google Scholar 

  40. H. Tsuge, S. Esho, J. Appl. Phys. 52, 4391 (1981)

    Article  ADS  Google Scholar 

  41. A. Rizzo, M. Alvisi, F. Sarto, S. Scaglione, L. Vasanelli, Surf. Coat. Technol. 108–109, 297 (1998)

    Article  Google Scholar 

  42. A. Goehlich, N. Niemöller, H. Döbele, Phys. Rev. B 62, 9349 (2000)

    Article  ADS  Google Scholar 

  43. M. Stepanova, S. Dew, J. Vac. Sci. Technol. A 19, 2805 (2001)

    Article  ADS  Google Scholar 

  44. M. Stepanova, S. Dew, J. Appl. Phys. 92, 1699 (2002)

    Article  ADS  Google Scholar 

  45. M. Stepanova, S. Dew, Nucl. Instrum. Methods Phys. Res. Sect. B 215, 357 (2004)

    Article  ADS  Google Scholar 

  46. F. Frost, R. Fechner, B. Ziberi, J. Völlner, D. Flamm, A. Schindler, J. Phys. Condens. Matter 21, 224026 (2009)

    Article  ADS  Google Scholar 

  47. N. Wiberg, E. Wiberg, Lehrbuch der Anorganischen Chemie (Gruyter, Berlin, 1995)

  48. S. Ghandhi, VLSI fabrication principles (Wiley, New York, 1994)

  49. P. Heaney, C. Prewitt, G. Gibbs, Rev. Mineral. 29, 1 (1994)

    Google Scholar 

  50. M. Jerman, Z. Qiao, D. Mergel, Appl. Opt. 44, 3006 (2005)

    Article  ADS  Google Scholar 

  51. K. Juskevičius, M. Audronis, A. Subačius, S. Kičas, T. Tolenis, R. Buzelis, R. Drazdys, M. Gaspariunas, V. Kovalevskij, A. Matthews, A. Leyland, Thin Solid Films 589, 95 (2015)

    Article  ADS  Google Scholar 

  52. C.-C. Lee, C.-J. Tang, Appl. Opt. 45, 9125 (2006)

    Article  ADS  Google Scholar 

  53. S.-H. Jeong, J.-K. Kim, B.-S. Kim, S.-H. Shim, B.-T. Lee, Vacuum 76, 507 (2004)

    Article  ADS  Google Scholar 

  54. F. Smidt, Int. Mater. Rev. 35, 61 (1990)

    Article  Google Scholar 

  55. S. Mohan, M.G. Krishna, Vacuum 46, 645 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Bundesmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateev, M., Lautenschläger, T., Spemann, D. et al. Systematic investigation of the reactive ion beam sputter deposition process of SiO2. Eur. Phys. J. B 91, 45 (2018). https://doi.org/10.1140/epjb/e2018-80453-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2018-80453-x

Keywords

Navigation