Skip to main content
Log in

Atomic clocks and the continuous-time random-walk

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Atomic clocks play a fundamental role in many fields, most notably they generate Universal Coordinated Time and are at the heart of all global navigation satellite systems. Notwithstanding their excellent timekeeping performance, their output frequency does vary: it can display deterministic frequency drift; diverse continuous noise processes result in nonstationary clock noise (e.g., random-walk frequency noise, modelled as a Wiener process), and the clock frequency may display sudden changes (i.e., “jumps”). Typically, the clock’s frequency instability is evaluated by the Allan or Hadamard variances, whose functional forms can identify the different operative noise processes. Here, we show that the Allan and Hadamard variances of a particular continuous-time random-walk, the compound Poisson process, have the same functional form as for a Wiener process with drift. The compound Poisson process, introduced as a model for observed frequency jumps, is an alternative to the Wiener process for modelling random walk frequency noise. This alternate model fits well the behavior of the rubidium clocks flying on GPS Block-IIR satellites. Further, starting from jump statistics, the model can be improved by considering a more general form of continuous-time random-walk, and this could bring new insights into the physics of atomic clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Vig, A. Ballato, Ultrasonic Instruments and Devices (Academic Press, 1999)

  2. L. Galleani, Metrologia 45, S175 (2008)

    Article  ADS  Google Scholar 

  3. P. Tavella, Metrologia 45, S183 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. D.W. Allan, IEEE Trans. Ultrason. Ferroelect. Freq. Control 34, 647 (1987)

    Article  ADS  Google Scholar 

  5. C. Zucca, P. Tavella, IEEE Trans. Ultrason. Ferroelect. Freq. Control 52, 289 (2005)

    Article  Google Scholar 

  6. L. Galleani, P. Tavella, IEEE Control Syst. Mag. 30, 44 (2010)

    Article  MathSciNet  Google Scholar 

  7. D.W. Allan, J.A. Barnes, Proceedings of the 35th Frequency Control Symposium (1981), pp. 470–474

  8. A.M. Yaglom, An Introduction to the Theory of Stationary Random Functions (Dover, NY, 1973)

  9. S.T. Hutsell, Proceedings of the 27th Precise Time and Time Interval Meeting (1995), pp. 291–302

  10. D. Kannan, An Introduction to Stochastic Processes (Elsevier North Holland Inc., 1979)

  11. V. Formichella, Metrologia 53, 1346 (2016)

    Article  ADS  Google Scholar 

  12. S.T. Hutsell, W.G. Reid, J.D. Crum, H.S. Mobbs, J. Buisson, in Proceedings of the 1996 Precise Time and Time Interval Meeting (1996), pp. 201–214

  13. F. Vannicola, R. Beard, D. Koch, A. Kubik, D. Wilson, in Proceedings of the 2013 Precise Time and Time Interval Meeting (2013), pp. 244–249

  14. V. Formichella et al., J. Appl. Phys. 120, 194501 (2016)

    Article  ADS  Google Scholar 

  15. V. Formichella, J. Camparo, P. Tavella, Appl. Phys. Lett. 110, 043506 (2017)

    Article  ADS  Google Scholar 

  16. J. Camparo et al., in Proceedings of the International Frequency Control Symposium (2016), pp. 195–198

  17. V. Formichella, J. Camparo, P. Tavella, in Proceedings of 2017 Precise Time and Time Interval Meeting, Monterey, California (2017), pp. 291–298

  18. J. Camparo, Phys. Today 60, 11 (2007)

    Article  Google Scholar 

  19. B.S. Mathur, H. Tangand, W. Happer, Phys. Rev. 171, 11 (1968)

    Article  ADS  Google Scholar 

  20. V. Formichella, J. Camparo, P. Tavella, in Proceedings of the 2016 European Frequency and Time Forum, York (2016)

  21. L. Galleani, P. Tavella, in Proceedings of the 42nd Precise Time and Time Interval Meeting, pp. 503–508

  22. J. Camparo et al., in Proceedings of the 45th Precise Time and Time Interval Meeting, Bellevue, Washington (2013), pp. 62–68

  23. D.P. Bertsekas, J.N. Tsitsiklis, Introduction to probability, 2nd edn. (Athena Scientific, 2008)

  24. J. Camparo, R. Mackay, J. Appl. Phys. 101, 053303 (2007)

    Article  ADS  Google Scholar 

  25. J. Coffer et al., J. Appl. Phys. 116, 163301 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Formichella.

Additional information

Contribution to the Topical Issue “Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook”, edited by Ryszard Kutner and Jaume Masoliver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formichella, V., Camparo, J. & Tavella, P. Atomic clocks and the continuous-time random-walk. Eur. Phys. J. B 90, 206 (2017). https://doi.org/10.1140/epjb/e2017-80272-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80272-7

Navigation