Skip to main content
Log in

Staggered potential and spin polarization effects on RKKY interaction in armchair graphene nanoribbon

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Indirect exchange interaction between two magnetic external atoms, named by Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction, has been presented in the staggered armchair graphene nanoribbon. We have studied RKKY interaction as a function of distance between localized moments. It has been shown that a magnetic ordering along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. The static spin susceptibility components of armchair graphene nanoribbon have been calculated to find exchange interaction between arbitrary components of magnetic moments. We have exploited Green’s function approach in order to calculate spin susceptibility components of electronic gas in nanoribbon structure in the context of tight binding model Hamiltonian. The effects of parameter and ribbon width on the dependence of exchange interaction on distance between moments are investigated. Our results show the spin polarization along perpendicular to the plane leads to anisotropic behavior for exchange interaction between the two magnetic moments. In other words the spatial behavior of RKKY interaction between longitudinal components of magnetic moments is different from that of transverse components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Geim, A.H. MacDonald, Phys. Today 60, 35 (2009)

    Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubons, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  3. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rorenberg, Science 313, 951 (2006)

    Article  ADS  Google Scholar 

  4. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  5. Y. Zhang, T.-W. Tan, H.L. Stormer, P. Kim, Nature (London) 438, 201 (2005)

    Article  ADS  Google Scholar 

  6. C. Jozas, B.J. van Wees, in Handbook of spin transport and magnetism, edited by E.Y. Tsymbal, I. Zutic (Chapman and Hall/CRC, 2011), p. 579

  7. O.V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010)

    Article  ADS  Google Scholar 

  8. M.A. Ruderman, C. Kittel, Phys. Rev. 96, 99 (1954)

    Article  ADS  Google Scholar 

  9. T. Kasuya, Prog. Theor. Phys. 16, 45 (1956)

    Article  ADS  Google Scholar 

  10. K. Yosida, Phys. Rev. 106, 893 (1957)

    Article  ADS  Google Scholar 

  11. B. Fischer, M.W. Klein, Phys. Rev. B 11, 2025 (1975)

    Article  ADS  Google Scholar 

  12. M.T. Beal-Monod, Phys. Rev. B 36, 8835 (1987)

    Article  ADS  Google Scholar 

  13. S. Saremi, Phys. Rev. B 76, 184430 (2007)

    Article  ADS  Google Scholar 

  14. L. Brey, H.A. Fertig, S. Das Sarma, Phys. Rev. Lett. 99, 116802 (2007)

    Article  ADS  Google Scholar 

  15. A.M. Black-Schaffer, Phys. Rev. B 81, 2056416 (2010)

    Google Scholar 

  16. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  17. S.R. Power, F.S.M. Guimaraes, A.T. Costa, R.B. Muniz, M.S. Ferreira, Phys. Rev. B 85, 195411 (2012)

    Article  ADS  Google Scholar 

  18. E. Kogan, Phys. Rev. B 84, 115119 (2011)

    Article  ADS  Google Scholar 

  19. M. Sherafati, S. Satpathy, Phys. Rev. B 83, 165425 (2011)

    Article  ADS  Google Scholar 

  20. M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996)

    Article  ADS  Google Scholar 

  21. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  22. M. Ezawa, Phys. Rev. B 73, 045432 (2006)

    Article  ADS  Google Scholar 

  23. C. Berger, J. Phys. Chem. B 108, 19912 (2004)

    Article  Google Scholar 

  24. K. Sasaki, S. Murakami, R. Saito, J. Phys. Soc. Jpn. 75, 074713 (2006)

    Article  ADS  Google Scholar 

  25. K. Sasaki, S. Murakami, R. Saito, Appl. Phys. Lett. 88, 113110 (2006)

    Article  ADS  Google Scholar 

  26. H. Zheng, Z.F. Wang, T. Luo, Q.W. Shi, J. Chen, Phys. Rev. B 75, 165414 (2007)

    Article  ADS  Google Scholar 

  27. H. Ajiki, T. Ando, J. Phys. Soc. Jpn. 62, 1255 (1993)

    Article  ADS  Google Scholar 

  28. S. Blankenburg, J. Cai, P. Ruffleux, R. Jaafar, D. Passerone, X. Feng, K. Mllen, R. Fasel, C.A. Pignedoli, ACS Nano 6, 2020 (2012)

    Article  Google Scholar 

  29. P. Ruffleux, J. Cai, N.C. Pumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Mllen, C.A. Pignedoli, R. Fasel, ACS Nano 6, 6930 (2012)

    Article  Google Scholar 

  30. S. Mi, S.-H. Yuan, P. Lyu, J. Appl. Phys. 109, 083931 (2011)

    Article  ADS  Google Scholar 

  31. G. Zarand, B. Janko, Phys. Rev. Lett. 89, 047201 (2002)

    Article  ADS  Google Scholar 

  32. Y. Asano, T. Yosida, Y. Tanaka, A.A. Golubov, Phys. Rev. B 78, 014514 (2008)

    Article  ADS  Google Scholar 

  33. H. Rezania, F. Azizi, J. Magn. Magn. Mater. 417, 272 (2016)

    Article  ADS  Google Scholar 

  34. H. Rezania, Y. Naseri, N. Shahrestani, AIP Adv. 7, 035320 (2017)

    Article  ADS  Google Scholar 

  35. N.M.R. Peres, F. Guinea, A.H. Castro Neto, Phys. Rev. B 72, 174406 (2005)

    Article  ADS  Google Scholar 

  36. Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  37. H. Rezania, A. Abdi, Superlatt. Microstruct. 104, 483 (2017)

    Article  ADS  Google Scholar 

  38. G.D Mahan, Many particle physics (Plenum Press, New York, 1993)

  39. H. Imamura, P. Bruno, Y. Utsumi, Phys. Rev. B 69, 121303(R) (2004)

    Article  ADS  Google Scholar 

  40. K. Szalowski, J. Phys.: Condens. Matter 25, 166001 (2013)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Rezania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezania, H., Sadeghi, E. Staggered potential and spin polarization effects on RKKY interaction in armchair graphene nanoribbon. Eur. Phys. J. B 90, 202 (2017). https://doi.org/10.1140/epjb/e2017-80223-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2017-80223-4

Keywords

Navigation