Skip to main content
Log in

Influence of strong screening effect on the perpendicular- polarized linear excitonic absorption spectra of semiconducting carbon nanotubes

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

For incident light polarized perpendicular to the tube axis the multi-band semiconductor Bloch equations (MB-SBEs) that involve various screened interband Coulomb interactions (ICIs) are derived. The calculated E 12 peak is very close to the longitudinal excitonic peak E 22. Compared with the previous theoretical peak positions, the blue-shift of the peak in our results is about 0.5 eV. Then, subsequent detailed analyses show that the screening effect on the diagonal ICIs (D-ICIs) plays a key role in this big blue-shift. The valley-degenerate transverse pair excitations holding the same selection rule further enhance the screening effect on D-ICIs. Specially at q = 0 the dielectric function acting on the D-ICIs enhances two times. In our calculation the strong screening effect contributes 90% of the big blue-shift, while the non-diagonal ICIs (ND-ICIs) contribute to 10% of the blue-shift.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. S. Tasaki, K. Maekawa, T. Yamabe, Phys. Rev. B 57, 9301 (1998)

    Article  ADS  Google Scholar 

  3. G.Y. Guo, K.C. Chu, D. Wang, C. Duan, Phys. Rev. B 69, 205416 (2004)

    Article  ADS  Google Scholar 

  4. E. Malić, M. Hirtschulz, F. Milde, A. Knorr, S. Reich, Phys. Rev. B 74, 195431 (2006)

    Article  ADS  Google Scholar 

  5. S. Motavas, A. Ivanov, A. Nojeh, Phys. Rev. B 82, 085442 (2010)

    Article  ADS  Google Scholar 

  6. L. Yin, H. Cheng, R. Saito, M.S. Dresselhaus, Carbon 49, 4774 (2011)

    Article  Google Scholar 

  7. V. Perebeinos, J. Tersoff, P. Avouris, Phys. Rev. Lett. 92, 257402 (2004)

    Article  ADS  Google Scholar 

  8. F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz, Science 308, 838 (2005)

    Article  ADS  Google Scholar 

  9. H. Zhao, S. Mazumdar, Phys. Rev. Lett. 93, 157402 (2004)

    Article  ADS  Google Scholar 

  10. E. Chang, G. Bussi, A. Ruini, E. Molinari, Phys. Rev. Lett. 92, 196401 (2004)

    Article  ADS  Google Scholar 

  11. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie, Phys. Rev. Lett. 92, 077402 (2004)

    Article  ADS  Google Scholar 

  12. Z. Wang, H. Zhao, S. Mazumdar, Phys. Rev. B 74, 195406 (2006)

    Article  ADS  Google Scholar 

  13. R.B. Capaz, C.D. Spataru, S. Ismail-Beigi, S.G. Louie, Phys Rev. B 74, 121401(R) (2006)

    Article  ADS  Google Scholar 

  14. J. Jiang, R. Saito, Ge.G. Samsonidze, A. Jorio, S.G. Chou, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 75, 035407 (2007)

    Article  ADS  Google Scholar 

  15. T. Ando, J. Phys. Soc. Jpn 75, 024707 (2006)

    Article  ADS  Google Scholar 

  16. T. Ando, J. Phys. Soc. Jpn 78, 104703 (2009)

    Article  ADS  Google Scholar 

  17. T. Ando, S. Uryu, Phys. Stat. Sol. C 6, 173 (2009)

    Article  Google Scholar 

  18. M. Hirtschulz, F. Milde, E. Malić, S. Butscher, C. Thomsen, S. Reich, A. Knorr, Phys. Rev. B 77, 035403 (2008)

    Article  ADS  Google Scholar 

  19. M. Hirtschulz, E. Malić, F. Milde, A. Knorr, Phys. Rev. B 80, 085405 (2009)

    Article  ADS  Google Scholar 

  20. E. Malić, Many-particle theory of optical properties in low-dimensional nanostructures, PhD Thesis, Technische Universität Berlin Institut für Theoretische Physik, Berlin, 2008

  21. G. Dukovic, F. Wang, D. Song, M.Y. Sfeir, T.F. Heinz, L.E. Brus, Nano Lett. 5, 2314 (2005)

    Article  ADS  Google Scholar 

  22. M. Barkelid, G.A. Steele, V. Zwiller, Nano Lett. 12, 5649 (2012)

    Article  ADS  Google Scholar 

  23. A. Malapanis, V. Perebeinos, D. Inha, E.S. Comfort, J.U. Lee, Nano Lett. 13, 3531 (2013)

    Article  ADS  Google Scholar 

  24. E.S. Comfort, D.A. Jones, A. Malapanis, Z.R. Robinson, M.T. Fishman, J.U. Lee, Phys. Rev. B 83, 081401(R) (2011)

    Article  ADS  Google Scholar 

  25. H. Liu, S. Schumacher, T. Meier, Phys. Rev. B 89, 155407 (2014)

    Article  ADS  Google Scholar 

  26. E. Malić, J. Maultzsch, S. Reich, A. Knorr, Phys. Rev. B 82, 035433 (2010)

    Article  ADS  Google Scholar 

  27. S. Uryu, T. Ando, Phys. Rev. B 77, 205407 (2008)

    Article  ADS  Google Scholar 

  28. Z. Zhang, E. Einarsson, Y. Murakami, Y. Miyauchi, S. Maruyama, Phys. Rev. B 81, 165442 (2010)

    Article  ADS  Google Scholar 

  29. Y. Battie, D. Jamon, J.S. Lauret, A. En Naciri, L. Broch, A. Loiseau, Carbon 50, 4673 (2012)

    Article  Google Scholar 

  30. Z. Wang, H. Zhao, S. Mazumdar, Phys. Rev. B 76, 115431 (2007)

    Article  ADS  Google Scholar 

  31. S. Kilina, S. Tretiak, S.K. Doorn, Z. Luo, F. Papadimitrakopoulos, A. Piryatinski, A. Saxena, A.R. Bishop, PNAS 105, 6797 (2008)

    Article  ADS  Google Scholar 

  32. Y. Miyauchi, M. Oba, S. Maruyama, Phys. Rev. B 74, 205440 (2006)

    Article  ADS  Google Scholar 

  33. K.-C. Chuang, A. Nish, J.-Y. Hwang, G.W. Evans, R.J. Nicholas, Phys. Rev. B 78, 085411 (2008)

    Article  ADS  Google Scholar 

  34. J. Lefebvre, P. Finnie, Phys. Rev. Lett. 98, 167406 (2007)

    Article  ADS  Google Scholar 

  35. J. Jiang, R. Saito, A. Grüneis, G. Dresselhaus, M.S. Dresselhaus, Carbon 42, 3169 (2004)

    Article  Google Scholar 

  36. Ge.G. Samsonidze, A. Grüneis, R. Saito, A. Jorio, Filho A.G. Souza, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 69, 205402 (2004)

    Article  ADS  Google Scholar 

  37. S.V. Goupalov, Phys. Rev. B 72, 195403 (2005)

    Article  ADS  Google Scholar 

  38. H. Ajiki, T. Ando, Physica B 201, 349 (1994)

    Article  ADS  Google Scholar 

  39. A. Zarifi, T.G. Pedersen, Phys. Rev. B 80, 195422 (2009)

    Article  ADS  Google Scholar 

  40. H. Liu, S. Schumacher, T. Meier, Phys. Rev. B 88, 035429 (2013)

    Article  ADS  Google Scholar 

  41. Y. Takagi, S. Okada, Phys. Rev. B 79, 233406 (2009)

    Article  ADS  Google Scholar 

  42. S. Uryu, T. Ando, Phys. Rev. B 74, 155411 (2006)

    Article  ADS  Google Scholar 

  43. S. Uryu, T. Ando, Phys. Rev. B 76, 115420 (2007)

    Article  ADS  Google Scholar 

  44. H. Ajiki, T. Iida, T. Ishikawa, S. Uryu, H. Ishihara, Phys. Rev. B 80, 115437 (2009)

    Article  ADS  Google Scholar 

  45. S. Uryu, T. Ando, Phys. Rev. B 83, 085404 (2011)

    Article  ADS  Google Scholar 

  46. A. Secchi, M. Rontani, Phys. Rev. B 88, 125403 (2013)

    Article  ADS  Google Scholar 

  47. S.V. Goupalov, Phys. Rev. B 84, 125407 (2011)

    Article  ADS  Google Scholar 

  48. S.V. Goupalov, Chem. Phys. 413, 20 (2013)

    Article  ADS  Google Scholar 

  49. S. Abe, J. Yu, W.P. Su, Phys. Rev. B 45, 8264 (1992)

    Article  ADS  Google Scholar 

  50. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th edn. (World Scientific, Singapore, 2009)

  51. K. Ohno, Theor. Chim. Acta 2, 219 (1964)

    Article  Google Scholar 

  52. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H. Influence of strong screening effect on the perpendicular- polarized linear excitonic absorption spectra of semiconducting carbon nanotubes. Eur. Phys. J. B 89, 230 (2016). https://doi.org/10.1140/epjb/e2016-70476-8

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70476-8

Keywords

Navigation