Skip to main content
Log in

Time-dependent Mott transition in the periodic Anderson model with nonlocal hybridization

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The time-dependent Mott transition in a periodic Anderson model with off-site, nearest-neighbor hybridization is studied within the framework of nonequilibrium self-energy functional theory. Using the two-site dynamical-impurity approximation, we compute the real-time dynamics of the optimal variational parameter and of different observables initiated by sudden quenches of the Hubbard-U and identify the critical interaction. The time-dependent transition is orbital selective, i.e., in the final state, reached in the long-time limit after the quench to the critical interaction, the Mott gap opens in the spectral function of the localized orbitals only. We discuss the dependence of the critical interaction and of the final-state effective temperature on the hybridization strength and point out the various similarities between the nonequilibrium and the equilibrium Mott transition. It is shown that these can also be smoothly connected to each other by increasing the duration of a U-ramp from a sudden quench to a quasi-static process. The physics found for the model with off-site hybridization is compared with the dynamical Mott transition in the single-orbital Hubbard model and with the dynamical crossover found for the real-time dynamics of the conventional Anderson lattice with on-site hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.F. Mott, Proc. Phys. Soc. London A 62, 416 (1949)

    Article  ADS  Google Scholar 

  2. N. Mott, Metal-Insulator Transitions, 2nd edn. (Taylor & Francis, London, 1990)

  3. . F. Gebhard, The Mott Metal-Insulator Transition (Springer, Berlin, 1997)

  4. . A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. . G. Kotliar, D. Vollhardt, Phys. Today 57, 53 (2004)

    Article  Google Scholar 

  6. M. Eckstein, M. Kollar, P. Werner, Phys. Rev. Lett. 103, 056403 (2009)

    Article  ADS  Google Scholar 

  7. . M. Schiró, M. Fabrizio, Phys. Rev. Lett. 105, 076401 (2010)

    Article  ADS  Google Scholar 

  8. . S.A. Hamerla, G.S. Uhrig, Phys. Rev. B 87, 064304 (2013)

    Article  ADS  Google Scholar 

  9. . S.A. Hamerla, G.S. Uhrig, Phys. Rev. B 89, 104301 (2014)

    Article  ADS  Google Scholar 

  10. . T. Esslinger, Annu. Rev. Condens. Matter Phys. 1, 129 (2010)

    Article  ADS  Google Scholar 

  11. . I. Bloch, J. Dalibard, S. Nascimbène, Nat. Phys. 8, 267 (2012)

    Article  Google Scholar 

  12. M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems, 1st edn. (Oxford University Press, Oxford, 2012)

  13. . M. Srednicki, Phys. Rev. E 50, 888 (1994)

    Article  ADS  Google Scholar 

  14. . J.M. Deutsch, Phys. Rev. A 43, 2046 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  15. . M. Rigol, V. Dunjko, M. Olshanii, Nature 452, 854 (2008)

    Article  ADS  Google Scholar 

  16. . J. Berges, S. Borsányi, C. Wetterich, Phys. Rev. Lett. 93, 142002 (2004)

    Article  ADS  Google Scholar 

  17. . M. Moeckel, S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008)

    Article  ADS  Google Scholar 

  18. . M. Moeckel, S. Kehrein, New J. Phys. 12, 055016 (2010)

    Article  ADS  Google Scholar 

  19. . M. Kollar, F.A. Wolf, M. Eckstein, Phys. Rev. B 84, 054304 (2011)

    Article  ADS  Google Scholar 

  20. . M. Marcuzzi, J. Marino, A. Gambassi, A. Silva, Phys. Rev. Lett. 111, 197203 (2013)

    Article  ADS  Google Scholar 

  21. P. Schmidt, H. Monien, arXiv:cond-mat/0202046 [cond-mat.str-el] (2002)

  22. . J.K. Freericks, V.M. Turkowski, V. Zlatić, Phys. Rev. Lett. 97, 266408 (2006)

    Article  ADS  Google Scholar 

  23. . H. Aoki, N. Tsuji, M. Eckstein, M. Kollar, T. Oka, P. Werner, Rev. Mod. Phys. 86, 779 (2014)

    Article  ADS  Google Scholar 

  24. . M. Eckstein, M. Kollar, P. Werner, Phys. Rev. B 81, 115131 (2010)

    Article  ADS  Google Scholar 

  25. . F. Hofmann, M. Eckstein, M. Potthoff, Phys. Rev. B 93, 235104 (2016)

    Article  ADS  Google Scholar 

  26. . M. Sandri, M. Schiró, M. Fabrizio, Phys. Rev. B 86, 075122 (2012)

    Article  ADS  Google Scholar 

  27. . F. Hofmann, M. Eckstein, E. Arrigoni, M. Potthoff, Phys. Rev. B 88, 165124 (2013)

    Article  ADS  Google Scholar 

  28. . M. Potthoff, Eur. Phys. J. B 32, 429 (2003)

    Article  ADS  Google Scholar 

  29. . M. Potthoff, M. Aichhorn, C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003)

    Article  ADS  Google Scholar 

  30. . P. Werner, M. Eckstein, Phys. Rev. B 86, 045119 (2012)

    Article  ADS  Google Scholar 

  31. . P. Werner, M. Eckstein, Europhys. Lett. 109, 37002 (2015)

    Article  ADS  Google Scholar 

  32. . E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Rev. Mod. Phys. 83, 349 (2011)

    Article  ADS  Google Scholar 

  33. . C. Gramsch, K. Balzer, M. Eckstein, M. Kollar, Phys. Rev. B 88, 235106 (2013)

    Article  ADS  Google Scholar 

  34. . K. Balzer, Z. Li, O. Vendrell, M. Eckstein, Phys. Rev. B 91, 045136 (2015)

    Article  ADS  Google Scholar 

  35. . F.A. Wolf, I.P. McCulloch, U. Schollwöck, Phys. Rev. B 90, 235131 (2014)

    Article  ADS  Google Scholar 

  36. . M. Balzer, M. Potthoff, Phys. Rev. B 83, 195132 (2011)

    Article  ADS  Google Scholar 

  37. . C. Gramsch, M. Potthoff, Phys. Rev. B 92, 235135 (2015)

    Article  ADS  Google Scholar 

  38. . M. Behrmann, M. Fabrizio, F. Lechermann, Phys. Rev. B 88, 035116 (2013)

    Article  ADS  Google Scholar 

  39. . C. Huscroft, A.K. McMahan, R.T. Scalettar, Phys. Rev. Lett. 82, 2342 (1999)

    Article  ADS  Google Scholar 

  40. . K. Held, C. Huscroft, R.T. Scalettar, A.K. McMahan, Phys. Rev. Lett. 85, 373 (2000)

    Article  ADS  Google Scholar 

  41. . K. Held, R. Bulla, Eur. Phys. J. B 17, 7 (2000)

    Article  ADS  Google Scholar 

  42. . P.V. Dongen, K. Majumdar, C. Huscroft, F.-C. Zhang, Phys. Rev. B 64, 195123 (2001)

    Article  ADS  Google Scholar 

  43. . R. Bulla, M. Potthoff, Eur. Phys. J. B 13, 257 (2000)

    Article  ADS  Google Scholar 

  44. . W.F. Brinkman, T.M. Rice, Phys. Rev. B 2, 4302 (1970)

    Article  ADS  Google Scholar 

  45. . F. Hofmann, M. Eckstein, M. Potthoff, J. Phys.: Conf. Ser. 696, 012002 (2016)

    ADS  Google Scholar 

  46. R. van Leeuwen, N.E. Dahlen, G. Stefanucci, C.O. Almbladh, U. von Barth, in Time-Dependent Density Functional Theory, edited by M.A.L. Marques, C.A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E.K.U. Gross (Springer, Berlin Heidelberg, 2006), p. 33

  47. J. Rammer, Quantum field theory of nonequilibrium states (Cambridge University Press, 2007)

  48. C.T. Kelley, Solving nonlinear equations with Newton’s method, in Fundamentals of algorithms (SIAM, 1987)

  49. . C.G. Broyden, Math. Comp. 19, 577 (1965)

    Article  MathSciNet  Google Scholar 

  50. . E. Lange, Mod. Phys. Lett. B 12, 915 (1998)

    Article  ADS  Google Scholar 

  51. . M. Potthoff, Eur. Phys. J. B 36, 335 (2003)

    Article  ADS  Google Scholar 

  52. . A. Georges, W. Krauth, Phys. Rev. B 48, 7167 (1993)

    Article  ADS  Google Scholar 

  53. . M.J. Rozenberg, G. Kotliar, X.Y. Zhang, Phys. Rev. B 49, 10181 (1994)

    Article  ADS  Google Scholar 

  54. K. Požgajčić, arXiv:cond-mat/0407172 [cond-mat. str-el] (2004)

  55. . N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T. Esslinger, R. Sensarma, D. Pekker, E. Altman, E. Demler, Phys. Rev. Lett. 104, 080401 (2010)

    Article  ADS  Google Scholar 

  56. . F. Hofmann, M. Potthoff, Phys. Rev. B 85, 205127 (2012)

    Article  ADS  Google Scholar 

  57. . R. Rausch, M. Potthoff, New J. Phys 18, 023033 (2016)

    Article  ADS  Google Scholar 

  58. . M. Schiró, M. Fabrizio, Phys. Rev. B 83, 165105 (2011)

    Article  ADS  Google Scholar 

  59. . J. Dziarmaga, Adv. Phys. 59, 1063 (2010)

    Article  ADS  Google Scholar 

  60. . A. Francuz, J. Dziarmaga, B. Gardas, W.H. Zurek, Phys. Rev. B 93, 075134 (2016)

    Article  ADS  Google Scholar 

  61. . G. Moeller, Q. Si, G. Kotliar, M. Rozenberg, D.S. Fisher, Phys. Rev. Lett. 74, 2082 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Potthoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmann, F., Potthoff, M. Time-dependent Mott transition in the periodic Anderson model with nonlocal hybridization. Eur. Phys. J. B 89, 178 (2016). https://doi.org/10.1140/epjb/e2016-70350-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70350-9

Keywords

Navigation