Skip to main content
Log in

The effects of overtaking strategy in the Nagel-Schreckenberg model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Based on the Nagel-Schreckenberg (NS) model with periodic boundary conditions, we proposed the NSOS model by adding the overtaking strategy (OS). In our model, overtaking vehicles are randomly selected with probability q at each time step, and the successful overtaking is determined by their velocities. We observed that (i) traffic jams still occur in the NSOS model; (ii) OS increases the traffic flow in the regime where the densities exceed the maximum flow density. We also studied the phase transition (from free flow phase to jammed phase) of the NSOS model by analyzing the overtaking success rate, order parameter, relaxation time and correlation function, respectively. It was shown that the NSOS model differs from the NS model mainly in the jammed regime, and the influence of OS on the transition density is dominated by the braking probability p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329, 199 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)

    Article  ADS  Google Scholar 

  3. T. Nagatani, Rep. Prog. Phys. 65, 1331 (2002)

    Article  ADS  Google Scholar 

  4. J. Mahnke, R. Kaupus, I. Lubashevsky, Phys. Rep. 408, 1 (2005)

    Article  ADS  Google Scholar 

  5. M. Treiber, A. Hennecke, D. Helbing, Phys. Rev. E 59, 239 (1999)

    Article  ADS  Google Scholar 

  6. T. Fiig, J. Jensen, J. Stat. Phys. 71, 653 (1993)

    Article  ADS  Google Scholar 

  7. S. Jamison, M. McCartney, Nonlinear Dyn. 58, 141 (2009)

    Article  Google Scholar 

  8. D. Yang, X. Qiu, D. Yu, R. Sun, Y. Pu, Physica A 424, 62 (2015)

    Article  Google Scholar 

  9. S. Wolfram, Rev. Mod. Phys. 55, 601 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  10. K. Nagel, M. Schreckenberg, J. Phys. I France 2, 2221 (1992)

    Article  Google Scholar 

  11. D. Chowdhury, D.E. Wolf, M. Schreckenberg, Physica A 235, 417 (1997)

    Article  ADS  Google Scholar 

  12. W. Knospe, L. Santen, S. Andreas, S. Michael, Physica A 265, 614 (1999)

    Article  ADS  Google Scholar 

  13. H.J. Chen, Int. J. Mod. Phys. B 15, 3453 (2001)

    Article  ADS  Google Scholar 

  14. D.W. Huang, Y.P. Wu, Phys. Rev. E 63, 1 (2001)

    Google Scholar 

  15. X. Li, Q. Wu, R. Jiang, Phys. Rev. E 64, 1 (2001)

    Google Scholar 

  16. X.G. Li, B. Jia, Z.Y. Gao, R. Jiang, Physica A 367, 479 (2006)

    Article  ADS  Google Scholar 

  17. R. Jiang, M.B. Hu, B. Jia, R.L. Wang, Q.S. Wu, Eur. Phys. J. B 54, 267 (2006)

    Article  ADS  Google Scholar 

  18. K. Gao, R. Jiang, S.X. Hu, B.H. Wang, Q.S. Wu, Phys. Rev. E 76, 1 (2007)

    Article  Google Scholar 

  19. K. Jetto, H. Ez-Zahraouy, A. Benyoussef, Int. J. Mod. Phys. C 21, 1311 (2010)

    Article  ADS  Google Scholar 

  20. H. Echab, N. Lakouari, H. Ez-Zahraouy, A. Benyoussef, Int. J. Mod. Phys. C 26, 1550100 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Feng, J. Li, N. Ding, C. Nie, Physica A 428, 90 (2015)

    Article  ADS  Google Scholar 

  22. M. Schreckenberg, A. Schadschneider, K. Nagel, N. Ito, Phys. Rev. E 51, 2939 (1995)

    Article  ADS  Google Scholar 

  23. A. Schadschneider, M. Schreckenberg, J. Phys. A 30, L69 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Krauss, P. Wagner, C. Gawron, Phys. Rev. E 55, 5597 (1997)

    Article  ADS  Google Scholar 

  25. B. Eisenblaetter, L. Santen, A. Schadschneider, M. Schreckenberg, Phys. Rev. E 57, 1309 (1998)

    Article  ADS  Google Scholar 

  26. G. Csányi, J. Kertész, J. Phys. A 28, L427 (1995)

    Article  Google Scholar 

  27. A.M.C. Souza, L.C.Q. Vilar, Phys. Rev. E 80, 1 (2009)

    Google Scholar 

  28. H.B. Zhu, H.X. Ge, L.Y. Dong, S.Q. Dai, Eur. Phys. J. B 57, 103 (2007)

    Article  ADS  Google Scholar 

  29. W. Zhang, W. Zhang, Eur. Phys. J. B 87, 1 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. T. Qiu, X.X. Zou, G. Chen, X.F. Jiang, L.X. Zhong, Europhys. Lett. 108, 58007 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weibing Deng or Wei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Deng, W., Zhao, L. et al. The effects of overtaking strategy in the Nagel-Schreckenberg model. Eur. Phys. J. B 89, 203 (2016). https://doi.org/10.1140/epjb/e2016-60958-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60958-0

Keywords

Navigation