Skip to main content
Log in

Heterogeneous recurrence representation and quantification of dynamic transitions in continuous nonlinear processes

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Many real-world systems are evolving over time and exhibit dynamical behaviors. In order to cope with system complexity, sensing devices are commonly deployed to monitor system dynamics. Online sensing brings the proliferation of big data that are nonlinear and nonstationary. Although there is rich information on nonlinear dynamics, significant challenges remain in realizing the full potential of sensing data for system control. This paper presents a new approach of heterogeneous recurrence analysis for online monitoring and anomaly detection in nonlinear dynamic processes. A partition scheme, named as Q-tree indexing, is firstly introduced to delineate local recurrence regions in the multi-dimensional continuous state space. Further, we design a new fractal representation of state transitions among recurrence regions, and then develop new measures to quantify heterogeneous recurrence patterns. Finally, we develop a multivariate detection method for on-line monitoring and predictive control of process recurrences. Case studies show that the proposed approach not only captures heterogeneous recurrence patterns in the transformed space, but also provides effective online control charts to monitor and detect dynamical transitions in the underlying nonlinear processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Chen, H. Yang, Chaos Solitons Fractals 45, 978 (2012)

    Article  ADS  Google Scholar 

  2. P. Rao, S.T.S. Bukkapatnam, O. Beyca, Z. Kong, R. Komanduri, J. Manuf. Sci. Eng. 136, 021008 (2014)

    Article  Google Scholar 

  3. H. Yang, IEEE Trans. Biomed. Eng. 58, 339 (2011)

    Article  ADS  Google Scholar 

  4. H. Yang, C. Kan, G. Liu, Y. Chen, IEEE Trans. Automat. Sci. Eng. 10, 938 (2013)

    Article  Google Scholar 

  5. A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge University Press, 1995)

  6. S.T.S. Bukkapatnam, A. Lakhtakia, S. Kumara, Phys. Rev. E 52, 2375 (1995)

    Article  ADS  Google Scholar 

  7. S.T.S. Bukkapatnam, S. Kumara, A. Lakhtakia, ASME Trans. J. Manufact. Sci. Eng. 121, 568 (1999)

    Article  Google Scholar 

  8. S.T.S. Bukkapatnam, S. Kumara, A. Lakhtakia, CIRP J. Manufact. Syst. 29, 321 (1999)

    Google Scholar 

  9. M. Gültekin, E.A. Elsayed, J.R. English, A.S. Hauksdóttir, Int. J. Prod. Res. 40, 2303 (2002)

    Article  Google Scholar 

  10. G. Singer, I. Ben-Gal, Qual. Reliab. Eng. Int. 23, 899 (2007)

    Article  Google Scholar 

  11. N. Marwan, S. Schinkel, J. Kurths, Europhys. Lett. 101, 20007 (2013)

    Article  ADS  Google Scholar 

  12. N. Ruschin-Rimini, I. Ben-Gal, O. Maimon, IIE Transactions 45, 355 (2013)

    Article  Google Scholar 

  13. X. Zhang, H. Wang, Q. Huang, IEEE Trans. Semicond. Manufact. 22, 512 (2009)

    Article  Google Scholar 

  14. H. Wang, X. Zhang, A. Kumar, Q. Huang, IEEE Trans. Semicond. Manufact. 22, 188 (2009)

    Article  Google Scholar 

  15. X. Zhang, Q. Huang, IEEE Trans. Semicond. Manufact. 23, 263 (2010)

    Article  Google Scholar 

  16. N. Marwan, R.M. Carmen, M. Thiel, J. Kurths, Phys. Rep. 438, 237 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. H. Yang, S.T.S. Bukkapatnam, L.G. Barajas, Pattern Recognit. 44, 1834 (2011)

    Article  Google Scholar 

  18. H. Yang, S.T.S. Bukkapatnam, L.G. Barajas, Int. J. Comput. Integr. Manuf. 26, 401 (2013)

    Article  Google Scholar 

  19. Y. Chen, H. Yang, Physiol. Meas. 33, 1399 (2012)

    Article  Google Scholar 

  20. H. Yang, Y. Chen, Chaos 24, 013138 (2014)

    Article  ADS  Google Scholar 

  21. M.B. Kennel, R. Brown, H.D.I. Abarbanel, Phys. Rev. A 45, 3403 (1992)

    Article  ADS  Google Scholar 

  22. A.M. Fraser, H.L. Swinney, Phys. Rev. A 33, 1134 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  23. Y.J. Kim, J.M. Petal, IEEE Trans. Knowl. Data Eng. 22, 1014 (2010)

    Article  Google Scholar 

  24. C.H. Weiß, Statist. Methodol. 5, 56 (2008)

    Article  Google Scholar 

  25. C.H. Weiß, R. Göb, Comput. Stat. Data Anal. 52, 4369 (2008)

    Article  Google Scholar 

  26. C. Cheng, Z. Wang, W. Huang, S.T.S. Bukkapatnam, R. Komanduri, Procedia Manufacturing 1, 607 (2015)

    Article  Google Scholar 

  27. D. Dornfeld, S. Min, Y. Takeuchi, CIRP Ann. Manuf. Technol. 55, 745 (2006)

    Article  Google Scholar 

  28. A.L. Goldberger, L. Amaral, L. Glass, J. Haussdorff, P.C. Ivanov, R. Mark, J. Mietus, G. Moody, C.-K. Peng, H.E. Stanley, Circulation 23, e215 (2000)

    Article  Google Scholar 

  29. R.V. Donner, Y. Zou, J.F. Donges, N. Marwan, J. Kurths, New J. Phys. 12, 033025 (2010)

    Article  ADS  Google Scholar 

  30. J. Zhang, M. Small, Phys. Rev. Lett. 96, 238701 (2006)

    Article  ADS  Google Scholar 

  31. J.B. Gao, Phys. Rev. Lett. 83, 3178 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, H. Heterogeneous recurrence representation and quantification of dynamic transitions in continuous nonlinear processes. Eur. Phys. J. B 89, 155 (2016). https://doi.org/10.1140/epjb/e2016-60850-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60850-y

Keywords

Navigation