Skip to main content
Log in

Electronic structure and thermoelectric properties of (Mg2X)2 / (Mg2Y)2 (X, Y = Si, Ge, Sn) superlattices from first-principle calculations

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

To identify thermoelectric materials containing abundant, low-cost and non-toxic elements, we have studied the electronic structures and thermoelectric properties of (Mg2X)2/ (Mg2Y)2 (X, Y = Si, Ge, Sn) superlattices with state-of-the-art first-principles calculations using a modified Becke and Johnson (mBJ) exchange potential. Our results show that (Mg2Ge)2/ (Mg2Sn)2 and (Mg2Si)2/ (Mg2Sn)2 are semi-metals using mBJ plus spin-orbit coupling (mBJ + SOC), while (Mg2Si)2/ (Mg2Ge)2 is predicted to be a direct-gap semiconductor with a mBJ gap value of 0.46 eV and mBJ + SOC gap value of 0.44 eV. Thermoelectric properties are predicted by through solving the Boltzmann transport equations within the constant scattering time approximation. It is found that (Mg2Si)2/ (Mg2Ge)2 has a larger Seebeck coefficient and power factor than (Mg2Ge)2/ (Mg2Sn)2 and (Mg2Si)2/ (Mg2Sn)2 for both p-type and n-type doping. The detrimental influence of SOC on the power factor of p-type (Mg2X)2/ (Mg2Y)2 (X, Y = Si, Ge, Sn) is analyzed as a function of the carrier concentration, but there is a negligible SOC effect for n-type. These results can be explained by the influence of SOC on their valence and conduction bands near the Fermi level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wood, Rep. Prog. Phys. 51, 459 (1988)

    Article  ADS  Google Scholar 

  2. J.H. Yang, T. Caillat, MRS. Bull. 31, 224 (2006)

    Article  Google Scholar 

  3. H.J. Goldsmid, R.W. Douglas, Br. J. Appl. Phys. 5, 386 (1954)

    Article  ADS  Google Scholar 

  4. C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010)

    Article  Google Scholar 

  5. Y.Z. Pei, X.Y. Shi, Aaron LaLonde, H. Wang, L.D. Chen, G. Jeffrey Snyder, Nature 473, 66 (2011)

    Article  ADS  Google Scholar 

  6. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G. Jeffrey Snyder, Science 321, 554 (2008)

    Article  ADS  Google Scholar 

  7. G.J. Tan, L.D. Zhao, F. Shi, J.W. Doak, S.-H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, M.G. Kanatzidis, J. Am. Chem. Soc. 136, 7006 (2014)

    Article  Google Scholar 

  8. J. Garg, G. Chen, Phys. Rev. B 87, 140302 (2013)

    Article  ADS  Google Scholar 

  9. N.F. Hinsche, B.Yu. Yavorsky, M. Gradhand, M. Czerner, M. Winkler, J. König, H. Böttner, I. Mertig, P. Zahn, Phys. Rev. B 86, 085323 (2012)

    Article  ADS  Google Scholar 

  10. R.G. Morris, R.D. Riedin, G.C. Danielson, Phys. Rev. 109, 1909 (1958)

    Article  ADS  Google Scholar 

  11. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006)

    Article  ADS  Google Scholar 

  12. J.I. Tani, H. Kido, Physica B 364, 218 (2005)

    Article  ADS  Google Scholar 

  13. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, C. Uher, Phys. Rev. Lett. 108, 166601 (2012)

    Article  ADS  Google Scholar 

  14. J.J. Pulikkotil, D.J. Singh, S. Auluck, M. Saravanan, D.K. Misra, A. Dhar, R.C. Budhani, Phys. Rev. B 86, 155204 (2012)

    Article  ADS  Google Scholar 

  15. X.J. Tan, W. Liu, H.J. Liu, J. Shi, X.F. Tang, C. Uher, Phys. Rev. B 85, 205212 (2012)

    Article  ADS  Google Scholar 

  16. K. Kutorasinski, J. Tobola, S. Kaprzyk, Phys. Rev. B 87, 195205 (2013)

    Article  ADS  Google Scholar 

  17. K. Kutorasinski, B. Wiendlocha, J. Tobola, S. Kaprzyk, Phys. Rev. B 89, 115205 (2014)

    Article  ADS  Google Scholar 

  18. S.D. Guo, J.L. Wang, RSC Adv. 6, 31272 (2016)

    Article  Google Scholar 

  19. S.D. Guo, Europhys. Lett. 109, 57002 (2015)

    Article  ADS  Google Scholar 

  20. T. Koga, X. Sun, S.B. Cronin, M.S. Dresselhaus, Appl. Phys. Lett. 73, 2950 (1998)

    Article  ADS  Google Scholar 

  21. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, Adv. Mater. 19, 1043 (2007)

    Article  Google Scholar 

  22. X.F. Fan, G. Zeng, C. LaBounty, J.E. Bowers, E. Croke, C.C. Ahn, S. Huxtable, A. Majumdar, A. Shakouri, Appl. Phys. Lett. 78, 1580 (2001)

    Article  ADS  Google Scholar 

  23. S.M. Lee, D.G. Cahill, R. Venkatasubramanian, Appl. Phys. Lett. 70, 2957 (1997)

    Article  ADS  Google Scholar 

  24. G. Chen, C.L. Tien, X. Wu, J.S. Smith, J. Heat Transfer 116, 325 (1994)

    Article  Google Scholar 

  25. A. Majumdar, J. Heat Transfer 115, 7 (1993)

    Article  Google Scholar 

  26. R. Venkatasubramanian, E. Siivola, T. Colpitts, B.O. Quinn, Nature 43, 597 (2001)

    Article  ADS  Google Scholar 

  27. M.A. Belkin, F. Capasso, A. Belyanin, D.L. Sivco, A.Y. Cho, D.C. Oakley, C.J. Vineis, G.W. Turner, Nat. Photon. 1, 288 (2007)

    Article  ADS  Google Scholar 

  28. H. Balout, P. Boulet, M.C. Record, J. Phys. Chem. C 119, 17515 (2015)

    Article  Google Scholar 

  29. S.D. Guo, J. Alloys Compd. 663, 128 (2016)

    Article  Google Scholar 

  30. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  31. W. Kohn, L.J. Sham, Phys. Rev. A 140, 1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  32. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz Technische Universität Wien, Austria, 2001

  33. F. Tran, P. Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  34. A.H. MacDonald, W.E. Pickett, D.D. Koelling, J. Phys. C 13, 2675 (1980)

    Article  ADS  Google Scholar 

  35. D.J. Singh, L. Nordstrom, Plane Waves, Pseudopotentials and the LAPW Method, 2nd edn. (Springer, New York, 2006)

  36. J. Kunes, P. Novak, R. Schmid, P. Blaha, K. Schwarz, Phys. Rev. B 64, 153102 (2001)

    Article  ADS  Google Scholar 

  37. D.D. Koelling, B.N. Harmon, J. Phys. C 10, 3107 (1977)

    Article  ADS  Google Scholar 

  38. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  39. B.L. Huang, M. Kaviany, Phys. Rev. B 77, 125209 (2008)

    Article  ADS  Google Scholar 

  40. L.Q. Xu, Y.P. Zheng, J.C. Zheng, Phys. Rev. B 82, 195102 (2010)

    Article  ADS  Google Scholar 

  41. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  42. S.D. Guo, J. Semicond. 36, 053002 (2015)

    Article  Google Scholar 

  43. P. Boulet, M.C. Record, J. Chem. Phys. 135, 234702 (2011)

    Article  ADS  Google Scholar 

  44. S.D. Guo, arXiv:1602.03632

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San-Dong Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, SD. Electronic structure and thermoelectric properties of (Mg2X)2 / (Mg2Y)2 (X, Y = Si, Ge, Sn) superlattices from first-principle calculations. Eur. Phys. J. B 89, 134 (2016). https://doi.org/10.1140/epjb/e2016-60833-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60833-0

Keywords

Navigation