Skip to main content
Log in

Generalized Drude scattering rate from the memory function formalism: an independent verification of the Sharapov-Carbotte result

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

An explicit perturbative computation of the Mori’s memory function was performed by Götze and Wölfle (GW) to calculate generalized Drude scattering (GDS) rate for the case of electron-impurity and electron-phonon scattering in metals by assuming constant electronic density of states at the Fermi energy. In the present investigation, we go beyond this assumption and extend the GW formalism to the case in which there is a gap around the Fermi surface in electron density of states. The resulting GDS is compared with a recent one by Sharapov and Carbotte (SC) obtained through a different route. We find good agreement between the two at finite frequencies. However, we find discrepancies in the dc scattering rate. These are due to a crucial assumption made in SC namely ω ≫ | Σ(ϵ + ω) − Σ (ϵ) |. No such high frequency assumption is made in the memory function based technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.N. Basov, T. Timusk, Rev. Mod. Phys. 77, 721 (2005)

    Article  ADS  Google Scholar 

  2. D.N. Basov, R.D. Averitt, D. van der Marel, M. Dressel, K. Haule, Rev. Mod. Phys. 83, 471 (2011)

    Article  ADS  Google Scholar 

  3. T. Timusk, Solid State Commun. 127, 337 (2003)

    Article  ADS  Google Scholar 

  4. A.V. Puchkov, D.N. Basov, T. Timusk, J. Phys.: Condens. Matter 8, 10049 (1996)

    ADS  Google Scholar 

  5. J.M. Ziman, Electrons and Phonons (Clarendon Oxford, 1960)

  6. D. Pines, P. Nozieres, The Theory of Quantum Liquids (Benjamin, New York, 1966)

  7. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, 1976)

  8. Y.M. Dai, B. Xu, P. Cheng, H.Q. Luo, H.H. Wen, X.G. Qiu, R.P.S.M. Lobo, Phys. Rev. B 85, 092504 (2012)

    Article  ADS  Google Scholar 

  9. Y.S. Lee, K. Segawa, Z.Q. Li, W.J. Padilla, M. Dumm, S.V. Dordevic, C.C. Homes, Y. Ando, D.N. Basov, Phys. Rev. B 72, 054529 (2005)

    Article  ADS  Google Scholar 

  10. T. Holstein, Ann. Phys. 29, 410 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  11. P.B. Allen, Phys. Rev. B 3, 305 (1971)

    Article  ADS  Google Scholar 

  12. B. Mitrović, M.A. Fiorucci, Phys. Rev. B 31, 2694 (1985)

    Article  ADS  Google Scholar 

  13. S.G. Sharapov, J.P. Carbotte, Phys. Rev. B 72, 134506 (2005)

    Article  ADS  Google Scholar 

  14. H. Mori, Prog. Theor. Phys. 33, 423 (1965)

    Article  ADS  MATH  Google Scholar 

  15. W. Götze, P. Wölfle, J. Low Temp. Phys. 5, 575 (1971)

    Article  ADS  Google Scholar 

  16. W. Götze, P. Wölfle, Phys. Rev. B 6, 1226 (1972)

    Article  ADS  Google Scholar 

  17. R. Zwanzig, Phys. Rev. 124, 983 (1961)

    Article  ADS  MATH  Google Scholar 

  18. R. Zwanzig, in Lectures in Theoretical Physics, edited by W.E. Brittin, B.W. Downs, J. Downs (Interscience, New York, 1961), Vol. 3, p. 135

  19. N. Plakida, J. Phys. Soc. Jpn 65, 12 (1996)

    Article  Google Scholar 

  20. N.M. Plakida, Z. Phys. B 103, 383 (1997)

    Article  ADS  Google Scholar 

  21. A.A. Vladimirov, D. Ihle, N.M. Plakida, Phys. Rev B 85, 224536 (2012)

    Article  ADS  Google Scholar 

  22. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry And Correlation Functions (Advanced Books Classics, 1995)

  23. P. Fulde, Correlated electrons in Quantum Matter (World Scientific, 2012)

  24. A. Lucas, J. High Energy Phys. 2015, 1 (2015)

    Article  Google Scholar 

  25. A. Lucas, S. Sachdev, Phys. Rev. B 91, 195122 (2015)

    Article  ADS  Google Scholar 

  26. A.A. Patel, S. Sachdev, Phys. Rev. B 90, 165146 (2014)

    Article  ADS  Google Scholar 

  27. N. Das, N. Singh, arXiv:1509.03418 (2015)

  28. L.P. Kadanoff, P.C. Martin, Ann. Phys. 24, 419 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. D.N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960)

    Article  MathSciNet  Google Scholar 

  30. G.D. Mahan, Many-Particle Physics, 2nd edn. (Plenum, New York, London, 1990)

  31. B. Arfi, Phys. Rev. B, 45, 2352 (1992)

    Article  ADS  Google Scholar 

  32. R. Kubo, J. Phys. Soc. Jpn 12, 570 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  33. J. Hwang, Phys. Rev. B 83, 014507 (2011)

    Article  ADS  Google Scholar 

  34. J. Hwang, J.P. Carbotte, Phys. Rev. B, 86, 094502 (2012)

    Article  ADS  Google Scholar 

  35. P. Bhalla, N. Singh, Eur. Phys. J. B 87, 213 (2014)

    Article  ADS  Google Scholar 

  36. T. Holstein, Phys. Rev. 96, 535 (1954)

    Article  ADS  Google Scholar 

  37. R.R. Joyce, P.L. Richards, Phys. Rev. Lett. 24, 1007 (1970)

    Article  ADS  Google Scholar 

  38. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988)

    Article  ADS  Google Scholar 

  39. G. Grüner, Rev. Mod. Phys. 60, 1 (1994)

    Article  Google Scholar 

  40. G. Grüner, Density Waves in Solids (Addison-Wesley Publishing Company, 1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Bhalla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhalla, P., Singh, N. Generalized Drude scattering rate from the memory function formalism: an independent verification of the Sharapov-Carbotte result. Eur. Phys. J. B 89, 49 (2016). https://doi.org/10.1140/epjb/e2016-60799-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60799-9

Keywords

Navigation